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We analyze a novel model of the co-evolution of linguistiencounity structure and language.
Intuitively, agents want to communicate well with otherstigir linguistic community, and sim-
ilarly, linguistic communities consist of those agents tten communicate effectively amongst
themselves. Absent the effects of comunity structure, tbdahsuffers from poor efficiency in
the medium-run. Over the long-run, efficiency is attainad,diversity vanishes. When effects
of homophily are added to the model we find a more nuancedrpictlhen the population size
is large relative to frequency of stochastic shocks theh tiversity and efficiency are observed
in the medium-run, but diversity does not survive in the long. If stochasic shocks are more
frequent then diversity and efficiency can survive the lomg-

1. Introduction

The stunning diversity of the modern language lanscapeofes/curiosity as to
its origins and persistence. Models of language evolutanehiended to consider
in isolation mechanisms accounting for either efficiencgioersity. Nominally,
a model of the former phenomenon attempts to find conditieadihg to a popu-
lation state where a single, sensible language predonsiragecircumstance that
is clearly at odds with the latter. Indeed, a differential@ipn model of language
competition has been suggested as evidence that lingdigécsity is a transient
phenomenon destined to die out (Abrams & Strogatz, 2003).

Exogenous factors such as geographic isolation (Patré&atogppnen, 2004)
and language’s role as an in-group marker (Dunbar, 1998) baen suggested
to account for this discrepancy. More recently, reseaschawe proposed ho-
mophily, the tendency to associate with similar others, m&ehanism to account
for the persistence of diverse linguistic communities (lihan, Kirby, & Smith,
2010). However, the model views languages as abstractréeatictors. In this
framework, the desirability of a language is based soleyimilarity with neigh-
bors. In contrast, game-theoretic models of language 8wal(Trapa & Nowak,
2000), (Nowak, Plotkin, & Krakauer, 1999) have represetamgiuages explic-
itly as signalling systems (Lewis, 1969). These systemsitsyls and meanings



can possess homonymy and symonymy, so that languages hguggvadegrees
of intrinsic ambiguity. However, linguistic communitieseanot modelled.

In Section 2 we review the so-called language game. It is knthat under
replicator dynamics, the population can converge to aildigion of languages
that is inefficient (Pawlowitsch, 2008), (Huttegger, 2Q0&E prove a tight lower
bound on this efficiency loss, establishing that a partioeskample from the liter-
ature is representative of the worst-case. While divecsitypersist in this model,
low levels of efficiency can too. This model considers inérpbpulations— the
mass action approach. Infinite populations approximatdéhavior of large, fi-
nite populations over short time-horizons (Benaim & Welik2003).

In order to account for the inefficiency, researchers hamsidered mutation-
selection dynamics (a perturbation of the replicator dyicajr(Hofbauer & Hut-
tegger, 2008), or finite-population versions of the modewl®witsch, 2007),
(Fox & Shamma, 2011a). Itis shown in (Fox & Shamma, 2011&)réaicator-
like dynamics converge to efficient states in the sense athsitic stability
(Young, 1993). That s, the system spends almost all its tmafficient language
states as a parameter describing the frequency of stockshsitks is made small.
We show that the finite-population version of the game is amtdl game, which
suggests that similar results should exist for most semsliphamics. These re-
sults indicate that, in the long-run, agents overcome itiefii states, but in doing
S0 press out diversity.

We attempt to explain the observed persistence of divebsitguggesting
an augmentation of the model that introduces linguistic momity structure to
agents’ interactions. Our model is inspired by a model ohmpi formation
(Krause, 1997). In that model each agents’ opinion is a realber, and at each
time step each agent updates her opinion to be the averafe optnions that
differ from her own by at most a fixed threshhold. Agents cdasbpinions that
differ by more than the threshhold to be unreasonable. Silpjlour agents define
their linguistic community to be those other agents with mhbey can commu-
nicate above a certain threshhold. At each time step a ralydsatected agent
updates to the language within her community that achidvesighest utility
within that same community. Intuitively, such a model ougghbe friendly to
diversity because disparate languages can coexist im@lifeommunities.

We are able to perform an exact analysis of this model for @ice=d set of
parameters. In this case we find that only monomorphic lapgstates survive
in the long-run. However, this analysis is relevant only wiséochastic shocks
are extremely rare. Disruptive events with profound imgdiiens for the language
landscape, such as the reintroduction of modern hebreweifQth century, would
seem to betray such assumptions. Simulation results avedeabfor higher levels
of randomizing behavior, which suggest a strong tendenegras the formation
of distinct linguistic communities. Linguistic cohereriséiigh within these com-
munities, but not between them. Alternatively, we make vese to convergence



rates. It has been shown in a closely related setting thatsgslike our own
may require time to convergence that is exponential in thufadion size (Shah
& Shin, 2010). However, such systems may linger in metastataltes over the
medium-run (Nimwegen, Crutchfield, & Mitchell, 1997). Weespent simulation
results that suggest efficient but distinct communities parsist in this manner
even when they should be expected to vanish over the longAdimal simula-
tion study shows that the threshhold parameter definingrigeiktic community
structure has substantial effects on the relative sizéssoddmmunities observed.

2. Thelanguage game

We consider a simple language game, first proposed in a sitiaditasimilar form
in (Lewis, 1969), and reformulated more recently in (Nowalalke, 1999). An
agent’s speech strategy isanx n binary, row-stochastfanatrix and her hearing
strategy is am x m binary, row-stochatic matrix. The linguistic coherenceof
particular speaking stratedy against a particular hearing strate@yis given by
trace(PQ). To see why, expand out

trace(PQ) = Z Z P Qi 1)

k=1 j=1

The outer summation considers eachofows of P. These rows corresponds to
them objects, with the single one in each row indicating the syhfitoon among
then available that a speaker usifjassociates with that object. The inner sum-
mation for a fixedk equals one ifP mapsk to the symbol thaf) associates with
the objectk, and zero otherwise. We will consider this basic model of kam
nication from two different perspectives, taking up therité-population setting
first.

2.1. Infinite populations

Suppose that there is a single population of mass equal toEeeh member of
the population must choose both speaking and hearinggieateNe confer any
ordering on the set of speaking and hearing matrix pairsarmguages There
arem™n™ languages so that th@opulation statex is an element of thex"n"™-
dimensional simplex

X:{XERmnnm L X 20721'1’:1}7 (2)

aA matrix is binary and row stochastic if and only if every roasha single element equal to one
and all other elements zero.



wherez; indicates the proportion of agents utilizing tha language. The fitness
of agents speaking thé&h language(P;, Q,), is

fi(xX) = trace(P, ZxJQJ + trace( Z:CJ )

In words, an agent’s fitness is her coherence achieved fram $aeaking and
hearing, assuming random matching with the population. Mysthe replicator
dynamics

=zi(fi(x Zx fi(x (4)
A population statex is aNeutrally Stable Stat(eNSS) if

Xf(x) >y'f(x) vyeX, (5)

and ifx' f(x) = y' f(x) thenx’f(y) > y'f(y). It has been shown (Pawlowitsch,
2008), (Huttegger, 2007) that the replicator dynamics meg@lmost always con-
verge to states maximizing average fitness. Indeed we magogpmon NSS with
average fitness of four for any value of or n (Hofbauer & Huttegger, 2008).
This fact is particularly unsettling taking into accounatithe maximum average
fitness is2 min{m, n}. We find that this is the worst-case.

Theorem 1: If x is an NSS the} . z; f;(x) > 4 and the bound is tight for all
m,n > 2.

An NSS may include multiple languages, prompting reseascioeview such
states as providing opportunities for language divergiboa(Pawlotisch, Mer-
tikopoulos, & Ritt, 2011). However, the accompanying pb#isy of such a
large efficiency gap prohibits the model from providing a Vidgte account of
languages evolving into a diverse landscape.

The mass-action heuristic can be shown to approximate isuffig large pop-
ulations over limited time spans (Benaim & Weibull, 2003) order to understand
the long-term behavior of the model we must represent thefpopulation ex-

plicitly.

2.2. Finite populations

We considerN agents, each utilizing a particular language. [tQ) be an
vector of N languages, one for each agent. Then the fithess of agefit, ..., N}

is
fi(P,Q) = trace(P, Z Qj) + trace(N ! Z P;Qi), (6)
7751 j;éi

analogous to the infinite-population model. The long-ruhawéor of this game
under various dynamics is taken up in (Fox & Shamma, 2011H)(&ox &




Shamma, 2011a). Each of these dynamics assume that at m&cétéip an agent
will with probability ¢ > 0 switch to a different language at random. The states
that are observed with positive probability in the limit ags taken to zero are
calledstochastically stabl€¢Young, 1993). For each dynamic it is shown that the
stochastically stable states correspond to monomorpaiestmaximizing aver-
age fitness. We next argue that such outcomes should be edpety generally
for this game.

A game isa potential gamgMonderer & Shapley, 1996) if there exists a
function® : A — R (the domain being the set of joint strategies) such that for
any playeri, any joint strategy, and any strategy of player: we have

fi(s,8-4) = fi(s) = ®(s,8-4) — @(9), (7)

wheres_; is the vector of strategiess for players other thamhe implication of
this definition is that individual optimizing activity isté&amount to optimization
of the potential functiord.

Theorem 2: The finite-population language game is a potential game pdtien-
tial function® = L ™V f;.

Since the potential function is proportional to averageefif) it is not supris-
ing that stochastic evolutionary dynamics tend to maxinaizerage fithess. An
intriguing question is how this model can be augmented toaatfor diversity,
while preserving some measure of efficiency. Towards thikves propose a dy-
namic model that assumes the formation of linguistic comitram

3. Linguistic communities

At each timet we select an agent uniformly at random. This agents neidunat

hi(P[t], Q[t]) = {j # i : trace(Bi[1)Q;[t] + P;[]Qi[t]) > r} (8)
Ui # i (B[t Q4lt]) = (Bilt], il 9)

is precisely the agents with whom she can communicate ated #ove some
fixed threshold- € (0,2min{m,n}) along with those sharing her language. If
she cannot communicate with anyone above the threshholdiske a new lan-
guage at random uniformly. Otherwise, with probability ¢, she selects the lan-
guage of an agent within her neighborhood that achievesrmaniperformance
relative to her neighborhood, i.e. from amongst the set

ar ma trace(P;|t t]) + trace( Py [t]Q,[t]). 10

Bomax Y (B1Qul1) + trace(Peld)Qs 1) (10)
keh; (P[t],Q[t])

Or, with small probabilitye > 0 she chooses a random language instead. All

other agents continue with their previous language and aagemnt is selected for

revision as above.
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Figure 1. The network structure fat = n = 2, r = 3.

Different values ofn, n, andr will give a range of possible network structures.
As an example, we illustrate the structure for=n = 2, r = 3 in Fig. 1. An
agent’s neighbors are the agents who use the languagesthatvh language is
linked to in this graph. Notice that for these parametery ddl of 16 languages
possess links, and only two are linked to themselves.

The model appears contrived because an agent that can cooateueffec-
tively within her community will with high probability es@w the opportunity to
revise her language in order to communicate effectivelhaitarger community.
We are altogether ignoring the advantages of incumbentytbdels of language
competition concentrate on. It turns out that for smag#lven this is not enough.

Theorem 3: Letm = n > 2 andr € (2(n — 1),2n). Then the stochastically
stable states of the linguistic community model are the mmnmphic states maxi-
mizing average fitness.

Recall that the stochastically stable states are almostalvill see in the
long-run. For these parameters, the elaborate linguisticneunity structure has
thus made no difference at all from the viewpoint of stodeastiability . Our
analysis does not preclude diversity over the medium-rdardarger values o,
perspectives we now take up.

Stochastic stability characterizes long-run behaviorshigh predictions may
only become relevant after extraordinary lengths of timadé&r more reasonable
timescales states that are not stochastically stable mayea” stable, a phe-



nomenon referred to as metastability. Simulation resliltstrated in the leftmost
plot of Fig. 2 indicate this can occur for parameter valuasced by our theorem.
Two languages satisfyrace( PQ) = m = n = 2, these are thalignedlanguages
and are represented with dotted lines. The wider dots itedhe more prevalent
of the twd. The solid line sums over all other languages. Despite enadigtset-
tling into monmorphic states, the simulations indicate dast@ble epoch where
diverse communities thrive.
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Figure 2. Stability of diversity varies with/; » = 3, m = n = 2,e = 10~%, average of 10 runs.

Whene is not small relative to the population size, we observe rdweef-
ficient linguistic communities even over long time-horizanThe impact of in-
creasing the population size witffixed is illustrated in Fig. 2. For = 10~* we
eventually observe monomorphic states for smdJlconsistent with stochastic
stability analysis. ASV grows we observe two equally sized internally efficient
linguistic communitie$ Interestingly, the relative community sizes are related t
the particular choice of threshhold as illustrated in Fig. 3
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Figure 3. Community sizes vary with m = n = 2,e = 10~%, N = 1000, average of 10 runs.
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Appendix A. Appendices
Appendix A.1. Proof of Theorem 1

It is straightforward to construct population states $gitig the bound with equal-
ity for anym, n. To see this, note that we can associate any populationstéatk
the average speaker and hearer,

(P.Q) = (Q_wiPi > iQu): (11)

This way, the set of average languages is simply the produbecset ofm x n
row-stochastic matrices and the sehofm row-stochastic matrices. In (Hofbauer
& Huttegger, 2008), NSS achieving average fitness of fourdaseribed for the
case ofm = n. We trivially extend their example to the case of genenah.
Consider( P, Q) given by

Al A2 - A1 O 1 0 -- 0
0o 0 - 0 1 1 0 - 0

N : , (12
0O 0 --- 0 1 0 1 - et

where0 < \;,u; < 1foralli,j. Clearlytrace(PQ) = DN+ Zj i = 2,
implying an average fitness of four. That the correspondimgufation state is
an NSS follows from the following lemma, which is merely a donation of
Theorem 1 and Lemma 1 in (Pawlowitsch, 2007).

LemmaAl.l: An average languagéP, ) correponds to an NSS if and only if
it satisfies the following four conditions:

1.

P e argmax trace(PQ),

P row-stochastic

Q € argmax trace(PQ),

@ row-stochastic
3. atleast one of, Q has no zero-column, and

4. neitherP nor ) has a column with multiple maximal elementgan1).

The first two conditions are neccesary and sufficientf3rQ) to be a Nash
equilibrium and the second two conditions are neccesangafiicient for a Nash
equilibrium to be an NSS in this setting. In order to prove th@orem, we must
show that no NSS can achieve average fitness strictly leaSda



Suppose there exist®, Q) that is an NSS and satisfiesace(PQ) < 2, so
that it corresponds to an average fitness less than fourlldw® that there are
m — 1 rows of P that contribute less than onettitvce( PQ). That is, the set

R = {Z : ZPUQ” < 1}, (13)

has cardinality at least — 1. The next lemma shows that it suffices to consider
P for which no two of these rows are the same standard basisrvect

Lemma Al.2: Supposen > 2,n > 2 and (P, Q) is the average language
corresponding to an NSS. Further suppose that there &xist such thatp;, , =
P, = 1 for somek. Then there exist(sP, Q) that corresponds to an NSS for
the reduced game with dimensiofis — 1), n and also satisfiesrace(PQ) =
trace(PQ).

Proof: Given (P, Q) and assuming without loss of generality that= 1 and
iy = 2 we can construdtP, Q) as

~ Py =1
By=3"1 T (14)
Py, i#1

so thatP consolidates the identical first two rows Bf ForQ, we consolidate by
combining the first two columng{ andi,), so that

A Qi1 +Qi2, j=1
i = . 15
Qs {Qi(j+1)v J#1 13)

In order to complete the proof of the lemma we must verify hbﬂt(P, Q)Acpr-
responds to an NSS of the reduced-order game andrtha{ PQ)) = trace(PQ).
The latter is easily verified by expanding out,

trace( PQ ZZP”Q” = ZZPH—I)]Q](Z-‘:-I) + ZplaQal (16)

i#l g
= ZZP1+1)]Q](Z+1) + ZPIJ Qi1 + Qg2) 17)
i#l g
= ZZP1+1)JQJ(1+1 +ZP17Q71 +ZP2]Q72 (18)
i#l g
= trace(PQ), (29)

as required.
To verify the NSS property we must show that the four condgio Lemma
Al.1 are satisfied. For the first condition, assume the copira. there exist$



such thatrace(PQ) > trace(PQ). The matrixP can be expanded into a speaker
matrix for them x n game given by

P* _ Plj, Z € {1,2} ' (20)
P(z 1)j7 2 ¢ {1,2}

We show that the existence &* contradicts the supposition théP, Q) is an
NSS. This follows from computing

trace(P*Q) = Z Z 5Qji (21)
= Z > Pu- 1)7QJZ+ZP1JQ31+ZP1JQJ2 (22)
ig{1,2} J
= Z ZPz 1)7Q7 (i—1) +ZP13QJ1 (23)
i¢{1,2} J
= trace(PQ) > trace(PQ) = trace(PQ), (24)

implying that(P, Q) does not satisfy the first condition of Lemma A1.1.
The second condition can be verified similarly. Assume thereoy, i.e. there
exists@) such thatrace(PQ) > trace(PQ). We define

Qi] >
* ~2 ’ J € {132} 25
i {Qi(j—l)a je{1,2} @9

so that we have

trace(PQ*) = > > Pi;Q;, (26)
i g
= > > PyQju- 1)+ZP13 Qi +ZP2J Qi (27)
i¢{1,2} i
= Z ZPZ nggz 1) +ZP17Q]1 (28)
ig{1,2} J
= trace(PQ) > trace(PQ) = trace(PQ), (29)

implying that(P, Q) does not satisfy the second condition of Lemma Al.1.
For the third condition of Lemma A1.1 first suppoBehas no zero column.
Consider the sum of thgth column of P. If j = k then

ZRk =P+ Y Piiye =1+ Papor >0, (30)
i#1 i#1



as required. Ifj # k then

Zpij = Plj + ZP(H-l)j = Plj + PQJ' + Zp(i+1),j = ZPij >0, (31)
i i#1 i#1 i

as required. Instead suppa@ehas no zero column. Aside from the first column,

all the columns of@) match columns of) and are hence non-zero. The first

column sum is given by

Z Qi1 = Z Qi1 + Qiz > Z Qa >0, (32)

as required. R
Finally, we verify the fourth condition. First consid&r Thek’th column has

max Py, = Py = 1, (33)

by assumption. For any other coluniné k we have two cases. thax; P;; = 1
then so doesnax; P” Alternatively if max; P;; € (0,1) then the cardinality

of argmax; P;; is still one becausé,;, the deleted element, is equal to zero.
Lastly, consider the first column @. The other columns are unchanged from
Q. Suppose thatax; Qn € (0,1). This requires thatnax; Q;; € [0,1) and
max; Q2 € [0,1), with at most one of the quantities equal to zero. Assume
without loss of generality thahax; Q;1 € (0,1). If max; Q2 = 0 thenQil =

Q1 for all 7 and the condition is satisfied. Therefore, suppasg; Q;2 € (0,1)

as well. We claim that

argmax Qil = argmax Qi=k= argmax Qio, (34)

which clearly implies the fourth condition. The first eqtyaliollows from the
second and third equalities and the definitiog)ofThe second and third equalities
can be verified by supposinggmax; Q,; = k # kfor somej € {1,2}. We
could then define

_ P)ijv ( # j .
Piji 1, l:j,j:k, (35)
0, 1= jvj 7é ]%
so that
trace(PQ) — trace(PQ) = Z ijij - Z PQy; (36)
J J
=Qj; — Qy; >0, (37)

which contradicts condition one of Lemma Al1.1 {d?, Q). &



As mentioned above, Lemma A1.2 allows us to assume Ehabntains no
two rows that are the same standard basis vector. This isibeage can apply
Lemma Al.2 inductively until there are no more repeateddsiethbasis vectors.
If a counterexample to the theorem exists for the higheredisional game with
the repeated basis vectors, then the existence of a coexaerple is also implied
for the lower-dimensional game sans the repeated basisrvé@tiat is, so long as
m > 2 andn > 2. It turns out that there are no such NSS when= 2.

LemmaAl3: Supposen = 2,n > 2 andP’s rows are both the same standard
basis vector. Thef\P, ) is not the average language corresponding to an NSS.

Proof: Asssume thatP, Q) is an NSS. We can assume without loss of generality

that
1] -

It follows thattrace(PQ) = Q11 + Q12. We claim that

1 € argmax @y, forj € {1,2}. (39)

To see this, assume the contrary, i.e. that there exigtd, ; € {1,2} such that
@;; > Qy;- Then construct

i Py, i#j
PZJ: 11 Z:],]:Z, (40)
0, i=j,j#1

and observe that

trace(pQ) — trace(PQ) = Q;; — Qy; >0, (412)

which contradicts our assumption thi& @) is an NSS because the first condition
of Lemma Al.1 is violated. Next, assume without loss of galitgrthat1 >
Q11 > 3,implying0 < Q12 < 1. The strict inequalities are implied by the third
condition of Lemma A1.1 along with the preceding claim. Tkheand row must
also sum to one, so its maximum element must be at I§a3f the maximum
element is in the first column then it must be strictly lessntfia; due to the
fourth condition of Lemma Al.1. It follows that

Qa2=1-0Q2 >1—-Q11 = Q2, (42)

which contradicts our claim. If the maximum element of theasel row is in the
second column the@oo, > % > (12, Which contradicts our claim since the fourth
condition of Lemma Al.1 implie§®22 # Q12. K.



The two preceding lemmas allow us to assume that no two ro&sane the
same standard basis vector. It follows that there exist®R and; such that

{1} = argmax Pw (43)

In other words, some element in one of the rowsKiris the unique maximum
element in its column. To see this, assume the contrary. i$haach column of
P either has its unique maximum element in the row not include®, or has
multiple maximum elements. If a column has multiple maximeiements then
those elements must all be equal to one by the fourth conditid. emma A1.1.
Since no two rows oP are the same standard basis vector this implies that the row
not in R contains the other one, with its other elements being zemmaiing
columns cannot have multiple maximum elements or their mari elements in
the row not inR, a contradiction. If all column maxima are unique, then ohe o
the rows inR must contain such a maximum by row-stochasticity.

The existence aof, j implies thatQﬁ = 1. Ifit did not then we could construct

) Qijy 17
0, i=j,j#1
so that o o -
trace(PQ) — trace(PQ) =1 — Q3 >0, (45)

which contradicts the second condition of Lemma Al.1. Wechate the proof
of Theorem 1 by demonstrating thai R, a contradiction. Otherwise we could
construct

Py, i#i
Py=1R1, i=ij=1i, (46)
0, i=ij#]
so that o o o
trace(PQ) — trace(PQ) =1 — ZP”QJZ >0, (47)

J

which contradcits the second condition of Lemma Al.1, whkeeinequality is
simply the definition of membership iR. B



Appendix A.2. Proof of Theorem 2

Let (P, Q) and (P, Q) differ only in the language of player Then we have

=3 5P.Q - 3 Y FP.Q) (48)
== Z [traee P —_— ZQJ + trace Nl - PJQJ] (49)
77’51 VE)
_Z Z [trace ZQJ + traCe(Nl 3 PjQi)] (50)
J?ﬁl J#i
= m Z Z trace(Pin + PJQl) (51)
i1 jg{ii}

b Y trace(PQ; + £Q) (52)
J#i

_ 2(N%1 ST trace(PQ; + PyQ) (53)

i j@{i,i}

- e 3 trace(PQ; + PiQ) (54)
j;é%

= trace P —_— Z Q + trace( 1_ 1 Z Ple) (55)

J;ﬁz J#i
— trace P —_— Z Q;) + trace N Z P;Q;) (56)
J;ﬁz J#i
= f(P.Q) - f(P,Q), (57)

as requiredll

Appendix A.3. Proof of Theorem 3

The proof utilizes the resistance tree method (Young, 1,998ch we here review
only briefly. Resistance trees are a tool used to charaeténz stochastically
stable states of Markov chains satisfying certain techrdoaditions. LetPg

be the family of Markov chains (in the paramet@rdescribed in our linguistic
community model for any fixed value of, = n > 2. We assume = 2n — 1,

noting that the proofis identical for any other value in tpedfied range. The set
of states ofP¢, Z, is the set of all possible assignments of t## languages to



each of theV players. A state € Z is stochastically stable if
lim pf(z) > 0, (58)
e—0

wherepu€ is the unique stationary distribution of the Markov chaithyparameter
e. It is straightforward to verify thaP© is a regular perturbed Markov process
allowing us to utilize the resistance tree method to idgritdf stochastically sta-
ble states. LeF, ..., Z; denote the recurrent communication classe®4fthe
Markov chain obtained by substitutirg= 0 into P¢. A statez is stochastically
stable if and only if its entire recurrent communicationsslas, a fact which al-
lows us to characterize stochastic stability at the levegofirrent communication
classes as oppose to individual states. Recall that at eaetstep, players ran-
domize with probability. Theresistance® between two recurrent communication
classesZ; andZ; is the minimum number of such randomization events required
to transition between the two classes, denoted(ls, Z;).

Consider a grapli- whose vertex set is the set of recurrent communication
classes. AZ;-treeT is a spanning tree i such that for any verteX;,j # i
there is a unique directed path fraf) to Z,. We define

vZ)= min > r(Z;, Z), (59)
i(Z]"er)eT

where 7y, is the set of allZ; trees inG, which we refer to as thetochastic
potential of Z;. The stochastically stable recurrent communication ekasse
precisely those having minimum stochastic potential.

Before proceeding, we briefly outline our proof strategy.c&ethat Theo-
rem 3 claims that the stochastically stable states are atlomorphic states in
aligned languages. That is, they are singleton recurrentrognication classes,
or absorbing states, in which every player utilizes somguage( P, Q) satisfy-
ing trace(PQ) = 2n— the maximum attainable. L&® refer to the set of states
satisfying the above conditions. Given a recurrent ciass/e can trivially lower
bound its stochastic potential

Y(Zk) = W(Zx) = ) minr(Z;, Z;). (60)

— jFi

i#£k
Since all resistance trees for a given recurrent class leveame set of source
nodes, we know that, at best, the minimum resistance traéevashthe resistance
between each of these sources and its minimum resistantieedie. This bound
is not always tight because the “greedy” graphs we impjiactinstruct need not
satisfy the connectivity requirements. We will show thatdoyz, y € O we have

Y(y) = v(z) = p(x) =1o. (61)

dNote that this is not the general definition of resistance alguees with it for our process.



We then establish stochastic stability®fby showing that for any. ¢ O we have
y(@) > p(z) > 0.

From here on we refer to recurrent communication classeasasgcurrent
classes for brevity. Not all recurrent classes are absgritates. Our proof will
not characterize the recurrent classes aside from a fewdayres. We first note
that only languages having at most one total zero column griiair two matrices
can appear in recurrent states because if a languUagg) has two or more total
zero columns then

trace(PQ + PQ) <2n—2 Y(P,Q). (62)

Players speaking these languages always randomize whem igivision oppur-
tunities because they cannot communicate with anyone gheuwereshhold.

The unperturbed process £ 0) is not innovative (i.e. new languages never
appear), so the set of languages in each state in a recutasstis the same.
More formally, consider any two states= (P, Q) andz = (I5, Q) contained in
a single recurrent clasg;. For anyj there must exisk such that(Pk, Qk) =
(P;,Q;). While each state in a recurrent class must have the samersqver
the set of all languages, the actual number of players spega&lch language can
vary from state to state. However, the number of playersispgaach aligned
language is constant across all of the states in the reduless. This is because
agents speaking aligned languages never change langualpegysas they have
neighbors, a claim we establish with the following lemma.

Lemma A3.1: Suppose that the statd®, Q) contains an aligned language
(P;, Q;) with |h;(P, Q)| > 1 then each
i €arg max ) Z trace(P;Qr + PrQ;), (63)

i€hi(P.Q kch;(P,Q)

satisfies P;, Q;) = (P;, Q).
Proof: By the definition of the neighborhodd (P, Q) we have

trace(PiQ; + P;Q;) > 2n — 1, (64)

for eachj € h;(P, Q). Neighbors of an agent speaking an aligned language either
speak the same aligned language or possess a zero colurgentfiae h;(P, Q)
possess a zero column then for dng h;(P, Q) we have

trace(Pij + Pij) <2n-—-1, (65)

andtrace(P;Q; + P;Q;) < 2n —2, so(P;, Q);) outperformg P}, ();) against all
members ofi; (P, Q) and does so strictly again&?;, Q;). B

Since the number of agents speaking any aligned languagmisi@creasing
for any state trajectory in the recurrent class, all statesch recurrent class must
have the same number of agents speaking each aligned lamguag



Consider recurrent classes containing one or more aligameglibges. A prob-
ability e event is sufficient to move one agent from a language thattialigmed
to one of the aligned languages present in the recurrerd.cladoes not matter
which state we apply the perturbation from. This new statg beatransient, but
we are guaranteed to reach a new recurrent class with sinimig agents speaking
aligned languages. This fact follows from the precedingifemProceeding like
this we can reach an abosrbing state in which all agents spiegied languages.
Agents can then switch from one aligned language to anotlaeprobability e
events so that we reach a state(mand we required only transitions between
absorbing states having resistance equal t6.one

Next, consider a recurrent clagg without any aligned languages. In this case
each stat¢P, Q) € Z; contains some agenfchieving

trace(P;Q;) = maxtrace(P;Q;) = ¢(Zy). (66)
j

We can reach a state that increases this constant by one iviglaesprobability
event. Further, this can be done in such a manner that the sigesking the new
language will have a non-empty neighborhood.

Lemma A3.2: Supposerace(PQ) < n — 1. Then there exists another language
(P, Q) satisftying o
trace(PQ) = trace(PQ) + 1, (67)
and R R
trace(PQ + PQ) > r =2n — 1. (68)

Proof: Assume that” has no zero columns and It = P’. The proof whenP
has a zero column is symmetric. Let

C={j:Y_ PQ =0}, (69)
B

the set of indices of columns 6f that do not contribute tarace( PQ). The matrix
Q@ has at most one zero column. First, supp@deas a zero column and let

Ci={jeC:) Q >0}, (70)
k

the set of indices il of non-zero columns af). Next, let

1, i€ Ch,j=min{argmax; Q;}
Pj; =40, i€(Ch,j#min{argmax, Qki} (71)
P;;, otherwise.

eWe will ignore redundancy in our construction since we cavags merge paths to eliminate any
redundancies in a resistance tree at the end



This way, each row of” in C; is confined to the support of the corresponding
columnin@. Thus,

trace PQ Z ZP”Qﬂ + Z ZPZ]Q]l + Z ZP’LJQJZ (72)

i€Cy J iceCe j iceC—-C1 jJ
> Z Zpiiji + Z Zpiiji (73)
i€Cr jJ i€eCc g
=2 > Qi+ )Y PyQi (74)
1€C1 j=min{argmax; Q;} i€Ce j
=[Cil+ > > PyQj = [Ch|+1C =n—1, (75)
€Ce g

which combined withtrace(PQ) = trace(PP’) = n establishes the first claim
of the lemma. The second claim of the lemma is verified by caingu

trace PQ Z ZP”Qﬂ + Z ZPZ]Q]l + Z ZP’LJQJZ (76)

i€C1 j icCe j i€eC—-Cp j

> Z ZPLJQJZ + Z ZPiiji (77)
ieCce j i€C—C1 j

=D > PiPy+ Y > PPy (78)
iece j i€C—C1 j

= |C°| +|C — Cy| = trace(PQ) + 1. (79)

To complete the proof of the lemma we instead suppose ¢hais no zero
column. We define the sef;, C C sothatj € Cp = >, Qr; > 0 and
|Co| = |C1| — 1. Put another way(, is any set obtained by removing any one
column index fromC;. Next, let

Pij = {Qﬁ’ i€ Co . (80)
P;;, otherwise,
giving,
trace(PQ) = Z ZPUQJZ + Z ZPUQJZ + Z szan (81)
i€cCo J i€Cec j i€ceC—Co j

> Z Zpiiji + Z Zpiiji (82)

i€Co j icCe j
= Z ZjSjS + Z Zpiiji (83)

i€cCo J ieCe j
=|Col+ Y > P,;Qji = |Co| +|C| =n—1, (84)

icCe j



as required. Lastly,

trace(PQ) = Z Zpijc?ji + Z Zpiiji + Z Zéy@n (85)

i€Co J i€Ce j i€C—Co Jj

2 Z ZPWQW + Z Z PiQji (86)
eCe j i€C—Co J

= Z ZPijPij + Z Zpijpij (87)
i€Ce j i€C—Co j

= |C° +|C — Cp| = trace(PQ) + 1, (88)

completing the proofll

While the new state may be transient, we reach a recurresg clantaining
the new language. This is because the last speaker of thidamguage never
abandons her language so long as she has a neighbor.

Lemma A3.3: Suppose that the stat®, Q) contains a languagépP;, ;) with
|h;(P,Q)| > 1 such that for allj # ¢ we have(P;,Q;) # (P;,Q;). Further
suppose

trace(P;Q;) > max trace(P;Q;), (89)
J#i
then
i =arg max Z trace(P;Qx + PrQ;). (90)
j€hi(P,Q) KEh, (P,Q)

Proof: By the definition of the neighborhool;(P, Q) and the uniqueness of
(P;, Q) we havetrace(P;Q; + P;Q;) > 2n — 1 for eachj € h;(P,Q). Each
other languagg € h;(P, Q) hastrace(P;Q;) < trace(P;Q;) < n so it achieves
a payoff of at mos2n — 2 against itself, whilg P;, Q;) achieves at leagn — 1.
Since(P;, Q;) outperforms each language strictly against at least orer ¢d-
guage in the neighborhood (namely, the language itselfigeéd only match that
language against all other languages. Thus it is sufficeeshow that for any two
agentsk,j € h;(P,Q) with & # j we havetrace(P,Q; + PjQx) < 2n — 1.
Assume the contrary, i.e. that there exist two agérgad; with & #£ j satisfying
trace(PrQ; + P;Qx) = 2n. This requires?, = Q’; andP; = Q). Now since;j

is in h;(P, Q) we know that eithe; = Q) or Q; = P/ because one of theace
terms must equat. We will deal with the former case only since the latter will
then follow from symmetry. By the same reasoning we havedltaer P, = Q’,
orQy = P/. If P, = Q) then

n = trace(P; Q) = trace(PrQk) < n, (91)
a contradiction. 1, = P/ then

n = trace(P;Qy) = trace(Q;P/) = trace(P;Q;). (92)



If trace(P;Q;) = n then all its neighbors possess a zero column, so that at least
one of the requirements, = Q’; or P; = Q) will violate row stochasticityl

Of course, we must guarantee that she continues to havelzboeign the way
to the recurrent class. The next lemma establishes thaashefithe neighbors of
the agent speaking the new language never abandons heaggngihat is, unless
she abandons her language for the new language. This caarhaply if the new
language is aligned, but in that case we have reached thargzedescribed above
and are done.

Lemma A3.4: Suppose that the stat®, Q) contains a languagépP;, ;) with
|h;(P,Q)| > 1 such that for allj # ¢ we have(P;,Q;) # (P;,Q:). Further
suppose

trace(P;Q;) <n —1, (93)
then either (i),
= trace(P;Qx + PuQ;), 94
i argjer}ﬂ%;f@k Z race(P;Qy + PrQ;) (94)
€hi(P,Q)

or (ii), there existg P, Q) such that for all

i € arg max Z trace(P;Qx + PrQ;), (95)
Jj€hi(P,Q) kehi (P.Q)

(P, Q) = (P, Q) andtrace(PQ) = n.
Proof: We know that for eacli € h;(P, Q) we have
trace(P;Q; + P;Q;) > 2n — 1. (96)
Consider any two agents j € h;(P, Q) and assume
trace(PrQ; + PjQr) = 2n. (97)

If this is not possible then (i) obtains. Supposing it is ploigswe haveP; = Q)
andP; = Q). Now sincej is in h;(P,Q) we know that eithe?; = @/ or
Q; = P/ because one of theace terms must equab. We will deal with the
former case only since the latter will then follow from syntrye By the same
reasoning we have that eithB;, = Q. or Q, = P/. If Q) = P/ then

n = trace(P;Qy) = trace(Q;P/) = trace(PQ;), (98)
a contradiction. Thu®, = Q} so that

n = trace(P; Q) = trace(PrQy), (99)



so that if (i) does not obtain, then (ii) obtains because afined languages can
outperform(P;, Q;) against its own neighboril

We can apply the above method inductively so ta, ) increases by one for
each recurrent classg;, visited. We eventually reach a recurrent class containing
an aligned language, from which point we have already astedal the existence
of a suitable path to a state d. From these states if? all departing edges have
resistance at least two. For a resistance tree rooted ateairsta € O, consider
y € O,y # z. From any such statg we can move two players to the aligned
language inz, giving a new abosrbing state that achieves the minimurstesie
from y of two. Then, we can move one player at a time to the alignegluage
in z, achieving a resistance of one for each abosrbing state owayto z. It
follows that

y(@) = p(z) = o = 2(10| = 1) + |0°] (100)

For any other recurrent clags¢ O it is sufficient to note that any resistance tree
has one more edge emanating from a stat@,iso that

Y(y) = ply) = 2|0+ [0°] =1 > o, (101)

completing the proofll



