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We analyze a novel model of the co-evolution of linguistic community structure and language.
Intuitively, agents want to communicate well with others intheir linguistic community, and sim-
ilarly, linguistic communities consist of those agents that can communicate effectively amongst
themselves. Absent the effects of comunity structure, the model suffers from poor efficiency in
the medium-run. Over the long-run, efficiency is attained, but diversity vanishes. When effects
of homophily are added to the model we find a more nuanced picture. When the population size
is large relative to frequency of stochastic shocks then both diversity and efficiency are observed
in the medium-run, but diversity does not survive in the long-run. If stochasic shocks are more
frequent then diversity and efficiency can survive the long-run.

1. Introduction

The stunning diversity of the modern language lanscape provokes curiosity as to
its origins and persistence. Models of language evolution have tended to consider
in isolation mechanisms accounting for either efficiency ordiversity. Nominally,
a model of the former phenomenon attempts to find conditions leading to a popu-
lation state where a single, sensible language predominates— a circumstance that
is clearly at odds with the latter. Indeed, a differential equation model of language
competition has been suggested as evidence that linguisticdiversity is a transient
phenomenon destined to die out (Abrams & Strogatz, 2003).

Exogenous factors such as geographic isolation (Patriarca& Leppnen, 2004)
and language’s role as an in-group marker (Dunbar, 1998) have been suggested
to account for this discrepancy. More recently, researchers have proposed ho-
mophily, the tendency to associate with similar others, as amechanism to account
for the persistence of diverse linguistic communities (Quillinan, Kirby, & Smith,
2010). However, the model views languages as abstract feature vectors. In this
framework, the desirability of a language is based soley on similarity with neigh-
bors. In contrast, game-theoretic models of language evolution (Trapa & Nowak,
2000), (Nowak, Plotkin, & Krakauer, 1999) have representedlanguages explic-
itly as signalling systems (Lewis, 1969). These systems’ symbols and meanings



can possess homonymy and symonymy, so that languages have varying degrees
of intrinsic ambiguity. However, linguistic communities are not modelled.

In Section 2 we review the so-called language game. It is known that under
replicator dynamics, the population can converge to a distribution of languages
that is inefficient (Pawlowitsch, 2008), (Huttegger, 2007). We prove a tight lower
bound on this efficiency loss, establishing that a particular example from the liter-
ature is representative of the worst-case. While diversitycan persist in this model,
low levels of efficiency can too. This model considers infinite populations— the
mass action approach. Infinite populations approximate thebehavior of large, fi-
nite populations over short time-horizons (Benaim & Weibull, 2003).

In order to account for the inefficiency, researchers have considered mutation-
selection dynamics (a perturbation of the replicator dynamics) (Hofbauer & Hut-
tegger, 2008), or finite-population versions of the model (Pawlowitsch, 2007),
(Fox & Shamma, 2011a). It is shown in (Fox & Shamma, 2011a) that replicator-
like dynamics converge to efficient states in the sense of stochastic stability
(Young, 1993). That is, the system spends almost all its timein efficient language
states as a parameter describing the frequency of stochastic shocks is made small.
We show that the finite-population version of the game is a potential game, which
suggests that similar results should exist for most sensible dynamics. These re-
sults indicate that, in the long-run, agents overcome inefficient states, but in doing
so press out diversity.

We attempt to explain the observed persistence of diversityby suggesting
an augmentation of the model that introduces linguistic community structure to
agents’ interactions. Our model is inspired by a model of opinion formation
(Krause, 1997). In that model each agents’ opinion is a real number, and at each
time step each agent updates her opinion to be the average of the opinions that
differ from her own by at most a fixed threshhold. Agents consider opinions that
differ by more than the threshhold to be unreasonable. Similarly, our agents define
their linguistic community to be those other agents with whom they can commu-
nicate above a certain threshhold. At each time step a randomly selected agent
updates to the language within her community that achieves the highest utility
within that same community. Intuitively, such a model oughtto be friendly to
diversity because disparate languages can coexist in different communities.

We are able to perform an exact analysis of this model for a restricted set of
parameters. In this case we find that only monomorphic language states survive
in the long-run. However, this analysis is relevant only when stochastic shocks
are extremely rare. Disruptive events with profound implications for the language
landscape, such as the reintroduction of modern hebrew in the 20th century, would
seem to betray such assumptions. Simulation results are provided for higher levels
of randomizing behavior, which suggest a strong tendency towards the formation
of distinct linguistic communities. Linguistic coherenceis high within these com-
munities, but not between them. Alternatively, we make recourse to convergence



rates. It has been shown in a closely related setting that systems like our own
may require time to convergence that is exponential in the population size (Shah
& Shin, 2010). However, such systems may linger in metastable states over the
medium-run (Nimwegen, Crutchfield, & Mitchell, 1997). We present simulation
results that suggest efficient but distinct communities canpersist in this manner
even when they should be expected to vanish over the long-run. A final simula-
tion study shows that the threshhold parameter defining the linguistic community
structure has substantial effects on the relative sizes of the communities observed.

2. The language game

We consider a simple language game, first proposed in a substantially similar form
in (Lewis, 1969), and reformulated more recently in (Nowak et al., 1999). An
agent’s speech strategy is anm×n binary, row-stochastica matrix and her hearing
strategy is ann ×m binary, row-stochatic matrix. The linguistic coherence ofa
particular speaking strategyP against a particular hearing strategyQ is given by
trace(PQ). To see why, expand out

trace(PQ) =

m
∑

k=1

n
∑

j=1

PkjQjk. (1)

The outer summation considers each ofm rows ofP . These rows corresponds to
them objects, with the single one in each row indicating the symbol from among
then available that a speaker usingP associates with that object. The inner sum-
mation for a fixedk equals one ifP mapsk to the symbol thatQ associates with
the objectk, and zero otherwise. We will consider this basic model of commu-
nication from two different perspectives, taking up the infinite-population setting
first.

2.1. Infinite populations

Suppose that there is a single population of mass equal to one. Each member of
the population must choose both speaking and hearing strategies. We confer any
ordering on the set of speaking and hearing matrix pairs, orlanguages. There
aremnnm languages so that thepopulation statex is an element of themnnm-
dimensional simplex

X = {x ∈ R
mnnm

: xi ≥ 0,
∑

i

xi = 1}, (2)

aA matrix is binary and row stochastic if and only if every row has a single element equal to one
and all other elements zero.



wherexi indicates the proportion of agents utilizing thei’th language. The fitness
of agents speaking thei’th language,(Pi, Qi), is

fi(x) = trace(Pi(
∑

j

xjQj)) + trace((
∑

j

xjPj)Qi). (3)

In words, an agent’s fitness is her coherence achieved from both speaking and
hearing, assuming random matching with the population. We study the replicator
dynamics

ẋi = xi(fi(x) −
∑

j

xjfj(x)). (4)

A population statex is aNeutrally Stable State(NSS) if

x′f(x) ≥ y′f(x) ∀y ∈ X, (5)

and if x′f(x) = y′f(x) thenx′f(y) ≥ y′f(y). It has been shown (Pawlowitsch,
2008), (Huttegger, 2007) that the replicator dynamics neednot almost always con-
verge to states maximizing average fitness. Indeed we may converge on NSS with
average fitness of four for any value ofm or n (Hofbauer & Huttegger, 2008).
This fact is particularly unsettling taking into account that the maximum average
fitness is2min{m,n}. We find that this is the worst-case.

Theorem 1: If x is an NSS then
∑

i xifi(x) ≥ 4 and the bound is tight for all
m,n ≥ 2.

An NSS may include multiple languages, prompting researchers to view such
states as providing opportunities for language diversification (Pawlotisch, Mer-
tikopoulos, & Ritt, 2011). However, the accompanying possibility of such a
large efficiency gap prohibits the model from providing a wholistic account of
languages evolving into a diverse landscape.

The mass-action heuristic can be shown to approximate sufficiently large pop-
ulations over limited time spans (Benaim & Weibull, 2003). In order to understand
the long-term behavior of the model we must represent the finite population ex-
plicitly.

2.2. Finite populations

We considerN agents, each utilizing a particular language. Let(P,Q) be an
vector ofN languages, one for each agent. Then the fitness of agenti ∈ {1, ..., N}
is

fi(P,Q) = trace(Pi
1

N − 1

∑

j 6=i

Qj) + trace(
1

N − 1

∑

j 6=i

PjQi), (6)

analogous to the infinite-population model. The long-run behavior of this game
under various dynamics is taken up in (Fox & Shamma, 2011b) and (Fox &



Shamma, 2011a). Each of these dynamics assume that at each time step an agent
will with probability ǫ > 0 switch to a different language at random. The states
that are observed with positive probability in the limit asǫ is taken to zero are
calledstochastically stable(Young, 1993). For each dynamic it is shown that the
stochastically stable states correspond to monomorphic states maximizing aver-
age fitness. We next argue that such outcomes should be expected very generally
for this game.

A game isa potential game(Monderer & Shapley, 1996) if there exists a
functionΦ : A → R (the domain being the set of joint strategies) such that for
any playeri, any joint strategys, and any strategys of playeri we have

fi(s, s−i)− fi(s) = Φ(s, s−i)− Φ(s), (7)

wheres−i is the vector of strategiess for players other thani. The implication of
this definition is that individual optimizing activity is tantamount to optimization
of the potential functionΦ.

Theorem 2: The finite-population language game is a potential game withpoten-
tial functionΦ ≡ 1

2

∑N
i=1 fi.

Since the potential function is proportional to average fitness, it is not supris-
ing that stochastic evolutionary dynamics tend to maximizeaverage fitness. An
intriguing question is how this model can be augmented to account for diversity,
while preserving some measure of efficiency. Towards this end we propose a dy-
namic model that assumes the formation of linguistic communities.

3. Linguistic communities

At each timet we select an agent uniformly at random. This agents neighborhood

hi(P[t],Q[t]) ≡ {j 6= i : trace(Pi[t]Qj [t] + Pj [t]Qi[t]) > r} (8)

∪ {j 6= i : (Pj [t], Qj [t]) = (Pi[t], Qi[t])}, (9)

is precisely the agents with whom she can communicate at a level above some
fixed thresholdr ∈ (0, 2min{m,n}) along with those sharing her language. If
she cannot communicate with anyone above the threshhold shepicks a new lan-
guage at random uniformly. Otherwise, with probability1− ǫ, she selects the lan-
guage of an agent within her neighborhood that achieves maximum performance
relative to her neighborhood, i.e. from amongst the set

arg max
j∈hi(P[t],Q[t])

∑

k∈hi(P[t],Q[t])

trace(Pj [t]Qk[t]) + trace(Pk[t]Qj [t]). (10)

Or, with small probabilityǫ > 0 she chooses a random language instead. All
other agents continue with their previous language and a newagent is selected for
revision as above.
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Figure 1. The network structure form = n = 2, r = 3.

Different values ofm,n, andr will give a range of possible network structures.
As an example, we illustrate the structure form = n = 2, r = 3 in Fig. 1. An
agent’s neighbors are the agents who use the languages that her own language is
linked to in this graph. Notice that for these parameters only 12 of 16 languages
possess links, and only two are linked to themselves.

The model appears contrived because an agent that can communicate effec-
tively within her community will with high probability eschew the opportunity to
revise her language in order to communicate effectively with a larger community.
We are altogether ignoring the advantages of incumbency that models of language
competition concentrate on. It turns out that for smallǫ, even this is not enough.

Theorem 3: Let m = n ≥ 2 and r ∈ (2(n − 1), 2n). Then the stochastically
stable states of the linguistic community model are the monomorphic states maxi-
mizing average fitness.

Recall that the stochastically stable states are almost allwe will see in the
long-run. For these parameters, the elaborate linguistic community structure has
thus made no difference at all from the viewpoint of stochastic stability . Our
analysis does not preclude diversity over the medium-run orfor larger values ofǫ,
perspectives we now take up.

Stochastic stability characterizes long-run behavior, but such predictions may
only become relevant after extraordinary lengths of time. Under more reasonable
timescales states that are not stochastically stable may “appear” stable, a phe-



nomenon referred to as metastability. Simulation results illustrated in the leftmost
plot of Fig. 2 indicate this can occur for parameter values covered by our theorem.
Two languages satisfytrace(PQ) = m = n = 2, these are thealignedlanguages
and are represented with dotted lines. The wider dots indicates the more prevalent
of the twob. The solid line sums over all other languages. Despite eventually set-
tling into monmorphic states, the simulations indicate a metastable epoch where
diverse communities thrive.
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Figure 2. Stability of diversity varies withN ; r = 3, m = n = 2, ǫ = 10
−4, average of 10 runs.

When ǫ is not small relative to the population size, we observe diverse, ef-
ficient linguistic communities even over long time-horizons . The impact of in-
creasing the population size withǫ fixed is illustrated in Fig. 2. Forǫ = 10−4 we
eventually observe monomorphic states for smallN , consistent with stochastic
stability analysis. AsN grows we observe two equally sized internally efficient
linguistic communitiesc. Interestingly, the relative community sizes are related to
the particular choice of threshhold as illustrated in Fig. 3.
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−4, N = 1000, average of 10 runs.
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Appendix A. Appendices

Appendix A.1. Proof of Theorem 1

It is straightforward to construct population states satisfying the bound with equal-
ity for anym,n. To see this, note that we can associate any population statex with
the average speaker and hearer,

(P̄ , Q̄) = (
∑

j

xjPj ,
∑

j

xjQj). (11)

This way, the set of average languages is simply the product of the set ofm × n
row-stochastic matrices and the set ofn×m row-stochastic matrices. In (Hofbauer
& Huttegger, 2008), NSS achieving average fitness of four aredescribed for the
case ofm = n. We trivially extend their example to the case of generalm,n.
Consider(P̄ , Q̄) given by





















λ1 λ2 · · · λn−1 0
0 0 · · · 0 1
...

...
...

...
0 0 · · · 0 1











,











1 0 · · · 0
1 0 · · · 0
...

...
...

0 µ1 · · · µm−1





















, (12)

where0 ≤ λi, µj ≤ 1 for all i, j. Clearly trace(P̄ Q̄) =
∑

i λi +
∑

j µj = 2,
implying an average fitness of four. That the corresponding population state is
an NSS follows from the following lemma, which is merely a combination of
Theorem 1 and Lemma 1 in (Pawlowitsch, 2007).

Lemma A1.1: An average language(P,Q) correponds to an NSS if and only if
it satisfies the following four conditions:

1.
P ∈ argmax

P̂ row-stochastic

trace(P̂Q),

2.
Q ∈ argmax

Q̂ row-stochastic

trace(PQ̂),

3. at least one ofP,Q has no zero-column, and

4. neitherP norQ has a column with multiple maximal elements in(0, 1).

The first two conditions are neccesary and sufficient for(P,Q) to be a Nash
equilibrium and the second two conditions are neccesarry and sufficient for a Nash
equilibrium to be an NSS in this setting. In order to prove ourtheorem, we must
show that no NSS can achieve average fitness strictly less than four.



Suppose there exists(P̄ , Q̄) that is an NSS and satisfiestrace(P̄ Q̄) < 2, so
that it corresponds to an average fitness less than four. It follows that there are
m− 1 rows ofP̄ that contribute less than one totrace(P̄ Q̄). That is, the set

R = {i :
∑

j

P̄ijQ̄ji < 1}, (13)

has cardinality at leastm − 1. The next lemma shows that it suffices to consider
P̄ for which no two of these rows are the same standard basis vector.

Lemma A1.2: Supposem > 2, n ≥ 2 and (P,Q) is the average language
corresponding to an NSS. Further suppose that there existi1, i2 such thatPi1k =
Pi2k = 1 for somek. Then there exists(P̂ , Q̂) that corresponds to an NSS for
the reduced game with dimensions(m − 1), n and also satisfiestrace(PQ) =
trace(P̂ Q̂).

Proof: Given (P,Q) and assuming without loss of generality thati1 = 1 and
i2 = 2 we can construct(P̂ , Q̂) as

P̂ij =

{

P1j , i = 1

P(i+1)j , i 6= 1
, (14)

so thatP̂ consolidates the identical first two rows ofP . ForQ, we consolidate by
combining the first two columns (i1 andi2), so that

Q̂ij =

{

Qi1 +Qi2, j = 1

Qi(j+1), j 6= 1
. (15)

In order to complete the proof of the lemma we must verify boththat(P̂ , Q̂) cor-
responds to an NSS of the reduced-order game and thattrace(PQ) = trace(P̂ Q̂).
The latter is easily verified by expanding out,

trace(P̂ Q̂) =
∑

i

∑

j

P̂ijQ̂ji =
∑

i6=1

∑

j

P(i+1)jQj(i+1) +
∑

j

P̂1jQ̂j1 (16)

=
∑

i6=1

∑

j

P(i+1)jQj(i+1) +
∑

j

P̂1j(Qj1 +Qj2) (17)

=
∑

i6=1

∑

j

P(i+1)jQj(i+1) +
∑

j

P1jQj1 +
∑

j

P2jQj2 (18)

= trace(PQ), (19)

as required.
To verify the NSS property we must show that the four conditions in Lemma

A1.1 are satisfied. For the first condition, assume the contrary, i.e. there exists̃P



such thattrace(P̃ Q̂) > trace(P̂ Q̂). The matrixP̃ can be expanded into a speaker
matrix for them× n game given by

P ∗
ij =

{

P̃1j , i ∈ {1, 2}

P̃(i−1)j , i /∈ {1, 2}
. (20)

We show that the existence ofP ∗ contradicts the supposition that(P,Q) is an
NSS. This follows from computing

trace(P ∗Q) =
∑

i

∑

j

P ∗
ijQji (21)

=
∑

i/∈{1,2}

∑

j

P̃(i−1)jQji +
∑

j

P̃1jQj1 +
∑

j

P̃1jQj2 (22)

=
∑

i/∈{1,2}

∑

j

P̃(i−1)jQ̂j(i−1) +
∑

j

P̃1jQ̂j1 (23)

= trace(P̃ Q̂) > trace(P̂ Q̂) = trace(PQ), (24)

implying that(P,Q) does not satisfy the first condition of Lemma A1.1.
The second condition can be verified similarly. Assume the contrary, i.e. there

existsQ̃ such thattrace(P̂ Q̃) > trace(P̂ Q̂). We define

Q∗
ij =

{

Q̃i1

2 , j ∈ {1, 2}

Q̃i(j−1), j /∈ {1, 2}
, (25)

so that we have

trace(PQ∗) =
∑

i

∑

j

PijQ
∗
ji (26)

=
∑

i/∈{1,2}

∑

i

PijQ̃j(i−1) +
∑

j

P1j
Q̃j1

2
+
∑

j

P2j
Q̃j1

2
(27)

=
∑

i/∈{1,2}

∑

j

P̂(i−1)jQ̃j(i−1) +
∑

j

P̂1jQ̃j1 (28)

= trace(P̂ Q̃) > trace(P̂ Q̂) = trace(PQ), (29)

implying that(P,Q) does not satisfy the second condition of Lemma A1.1.
For the third condition of Lemma A1.1 first supposeP has no zero column.

Consider the sum of thej’th column ofP̂ . If j = k then
∑

i

P̂ik = P1k +
∑

i6=1

P(i+1)k = 1 +
∑

i6=1

P(i+1)k > 0, (30)



as required. Ifj 6= k then
∑

i

P̂ij = P1j +
∑

i6=1

P(i+1)j = P1j + P2j +
∑

i6=1

P(i+1)j =
∑

i

Pij > 0, (31)

as required. Instead supposeQ has no zero column. Aside from the first column,
all the columns ofQ̂ match columns ofQ and are hence non-zero. The first
column sum is given by

∑

i

Q̂i1 =
∑

i

Qi1 +Qi2 >
∑

i

Qi1 > 0, (32)

as required.
Finally, we verify the fourth condition. First consider̂P . Thek’th column has

max
i

P̂ik = P1k = 1, (33)

by assumption. For any other columnj 6= k we have two cases. Ifmaxi Pij = 1

then so doesmaxi P̂ij . Alternatively if maxi Pij ∈ (0, 1) then the cardinality
of argmaxi P̂ij is still one becauseP1j , the deleted element, is equal to zero.
Lastly, consider the first column of̂Q. The other columns are unchanged from
Q. Suppose thatmaxi Q̂i1 ∈ (0, 1). This requires thatmaxiQi1 ∈ [0, 1) and
maxi Qi2 ∈ [0, 1), with at most one of the quantities equal to zero. Assume
without loss of generality thatmaxi Qi1 ∈ (0, 1). If maxi Qi2 = 0 thenQ̂i1 =
Qi1 for all i and the condition is satisfied. Therefore, supposemaxiQi2 ∈ (0, 1)
as well. We claim that

argmax
i

Q̂i1 = argmax
i

Qi1 = k = argmax
i

Qi2, (34)

which clearly implies the fourth condition. The first equality follows from the
second and third equalities and the definition ofQ̂. The second and third equalities
can be verified by supposingargmaxi Qiĵ = k̂ 6= k for someĵ ∈ {1, 2}. We
could then define

P̃ij =











Pij , i 6= ĵ

1, i = ĵ, j = k̂

0, i = ĵ, j 6= k̂

, (35)

so that

trace(P̃Q)− trace(PQ) =
∑

j

P̃ĵjQjĵ −
∑

j

PĵjQjĵ (36)

= Qk̂ĵ −Qkĵ > 0, (37)

which contradicts condition one of Lemma A1.1 for(P,Q). �



As mentioned above, Lemma A1.2 allows us to assume thatP̄ contains no
two rows that are the same standard basis vector. This is because we can apply
Lemma A1.2 inductively until there are no more repeated standard basis vectors.
If a counterexample to the theorem exists for the higher-dimensional game with
the repeated basis vectors, then the existence of a counter-example is also implied
for the lower-dimensional game sans the repeated basis vector. That is, so long as
m > 2 andn ≥ 2. It turns out that there are no such NSS whenm = 2.

Lemma A1.3: Supposem = 2, n ≥ 2 andP ’s rows are both the same standard
basis vector. Then(P,Q) is not the average language corresponding to an NSS.

Proof: Asssume that(P,Q) is an NSS. We can assume without loss of generality
that

P =

[

1 0 · · · 0
1 0 · · · 0

]

. (38)

It follows thattrace(PQ) = Q11 +Q12. We claim that

1 ∈ argmax
i

Qij , for j ∈ {1, 2}. (39)

To see this, assume the contrary, i.e. that there existsî 6= 1, ĵ ∈ {1, 2} such that
Qîĵ > Q1ĵ. Then construct

P̃ij =











Pij , i 6= ĵ

1, i = ĵ, j = î

0, i = ĵ, j 6= î

, (40)

and observe that

trace(P̃Q)− trace(PQ) = Qîĵ −Q1ĵ > 0, (41)

which contradicts our assumption that(P,Q) is an NSS because the first condition
of Lemma A1.1 is violated. Next, assume without loss of generality that 1 >
Q11 ≥ 1

2 , implying 0 < Q12 ≤ 1
2 . The strict inequalities are implied by the third

condition of Lemma A1.1 along with the preceding claim. The second row must
also sum to one, so its maximum element must be at least1

2 . If the maximum
element is in the first column then it must be strictly less than Q11 due to the
fourth condition of Lemma A1.1. It follows that

Q22 = 1−Q21 > 1−Q11 = Q12, (42)

which contradicts our claim. If the maximum element of the second row is in the
second column thenQ22 ≥ 1

2 ≥ Q12, which contradicts our claim since the fourth
condition of Lemma A1.1 impliesQ22 6= Q12. �.



The two preceding lemmas allow us to assume that no two rows inR are the
same standard basis vector. It follows that there existsî ∈ R andĵ such that

{î} = argmax
i

P̄iĵ . (43)

In other words, some element in one of the rows inR is the unique maximum
element in its column. To see this, assume the contrary. Thatis, each column of
P either has its unique maximum element in the row not includedin R, or has
multiple maximum elements. If a column has multiple maximumelements then
those elements must all be equal to one by the fourth condition of Lemma A1.1.
Since no two rows of̄P are the same standard basis vector this implies that the row
not in R contains the other one, with its other elements being zero. Remaining
columns cannot have multiple maximum elements or their maximum elements in
the row not inR, a contradiction. If all column maxima are unique, then one of
the rows inR must contain such a maximum by row-stochasticity.

The existence of̂i, ĵ implies thatQ̄ĵî = 1. If it did not then we could construct

Q̃ij =











Q̄ij , i 6= ĵ

1, i = ĵ, j = î

0, i = ĵ, j 6= î

, (44)

so that
trace(P̄ Q̃)− trace(P̄ Q̄) = 1− Q̄ĵî > 0, (45)

which contradicts the second condition of Lemma A1.1. We conclude the proof
of Theorem 1 by demonstrating thatî /∈ R, a contradiction. Otherwise we could
construct

P̃ij =











P̄ij , i 6= î

1, i = î, j = î

0, i = î, j 6= ĵ

, (46)

so that
trace(P̃ Q̄)− trace(P̄ Q̄) = 1−

∑

j

P̄îjQ̄jî > 0, (47)

which contradcits the second condition of Lemma A1.1, wherethe inequality is
simply the definition of membership inR. �



Appendix A.2. Proof of Theorem 2

Let (P,Q) and (P̂, Q̂) differ only in the language of player̂i. Then we have
Φ(P̂, Q̂)− Φ(P,Q)

=
1

2

∑

i

fi(P̂, Q̂)−
1

2

∑

i

fi(P,Q) (48)

=
1

2

∑

i



trace(P̂i
1

N − 1

∑

j 6=i

Q̂j) + trace(
1

N − 1

∑

j 6=i

P̂jQ̂i)



 (49)

−
1

2

∑

i



trace(Pi
1

N − 1

∑

j 6=i

Qj) + trace(
1

N − 1

∑

j 6=i

PjQi)



 (50)

=
1

2(N − 1)

∑

i6=î

∑

j /∈{i,̂i}

trace(PiQj + PjQi) (51)

+
1

N − 1

∑

j 6=î

trace(P̂îQ̂j + P̂jQ̂î) (52)

−
1

2(N − 1)

∑

i6=î

∑

j /∈{i,̂i}

trace(PiQj + PjQi) (53)

−
1

N − 1

∑

j 6=î

trace(PîQj + PjQî) (54)

= trace(P̂î

1

N − 1

∑

j 6=î

Q̂j) + trace(
1

N − 1

∑

j 6=î

P̂jQ̂î) (55)

− trace(Pî

1

N − 1

∑

j 6=î

Qj) + trace(
1

N − 1

∑

j 6=î

PjQî) (56)

= fî(P̂, Q̂)− fî(P,Q), (57)

as required.�

Appendix A.3. Proof of Theorem 3

The proof utilizes the resistance tree method (Young, 1993), which we here review
only briefly. Resistance trees are a tool used to characterize the stochastically
stable states of Markov chains satisfying certain technical conditions. LetPǫ

n

be the family of Markov chains (in the parameterǫ) described in our linguistic
community model for any fixed value ofm = n ≥ 2. We assumer = 2n − 1,
noting that the proof is identical for any other value in the specified range. The set
of states ofPǫ, Z, is the set of all possible assignments of then2n languages to



each of theN players. A statez ∈ Z is stochastically stable if

lim
ǫ→0

µǫ(z) > 0, (58)

whereµǫ is the unique stationary distribution of the Markov chain with parameter
ǫ. It is straightforward to verify thatPǫ is a regular perturbed Markov process
allowing us to utilize the resistance tree method to identify its stochastically sta-
ble states. LetZ1, ..., ZJ denote the recurrent communication classes ofP0, the
Markov chain obtained by substitutingǫ = 0 into Pǫ. A statez is stochastically
stable if and only if its entire recurrent communication class is, a fact which al-
lows us to characterize stochastic stability at the level ofrecurrent communication
classes as oppose to individual states. Recall that at each time step, players ran-
domize with probabilityǫ. Theresistanced between two recurrent communication
classesZi andZj is the minimum number of such randomization events required
to transition between the two classes, denoted byr(Zi, Zj).

Consider a graphG whose vertex set is the set of recurrent communication
classes. AZi-treeT is a spanning tree inG such that for any vertexZj, j 6= i
there is a unique directed path fromZj to Zi. We define

γ(Zi) = min
T∈TZi

∑

(Zj ,Zk)∈T

r(Zj , Zk), (59)

whereTZi
is the set of allZi trees inG, which we refer to as thestochastic

potential of Zi. The stochastically stable recurrent communication classes are
precisely those having minimum stochastic potential.

Before proceeding, we briefly outline our proof strategy. Recall that Theo-
rem 3 claims that the stochastically stable states are all monomorphic states in
aligned languages. That is, they are singleton recurrent communication classes,
or absorbing states, in which every player utilizes some language(P,Q) satisfy-
ing trace(PQ) = 2n— the maximum attainable. LetO refer to the set of states
satisfying the above conditions. Given a recurrent classZk we can trivially lower
bound its stochastic potential

γ(Zk) ≥ µ(Zk) ≡
∑

i6=k

min
j 6=i

r(Zi, Zj). (60)

Since all resistance trees for a given recurrent class have the same set of source
nodes, we know that, at best, the minimum resistance tree achieves the resistance
between each of these sources and its minimum resistance destination. This bound
is not always tight because the “greedy” graphs we implicitly construct need not
satisfy the connectivity requirements. We will show that for anyx, y ∈ O we have

γ(y) = γ(x) = µ(x) ≡ γO. (61)

dNote that this is not the general definition of resistance, but agrees with it for our process.



We then establish stochastic stability ofO by showing that for anyx /∈ O we have
γ(x) ≥ µ(x) > γO.

From here on we refer to recurrent communication classes as just recurrent
classes for brevity. Not all recurrent classes are absorbing states. Our proof will
not characterize the recurrent classes aside from a few key features. We first note
that only languages having at most one total zero column among their two matrices
can appear in recurrent states because if a language(P,Q) has two or more total
zero columns then

trace(P̂Q+ PQ̂) ≤ 2n− 2 ∀(P̂ , Q̂). (62)

Players speaking these languages always randomize when given revision oppur-
tunities because they cannot communicate with anyone abovethe threshhold.

The unperturbed process (ǫ = 0) is not innovative (i.e. new languages never
appear), so the set of languages in each state in a recurrent class is the same.
More formally, consider any two statesz = (P,Q) andẑ = (P̂, Q̂) contained in
a single recurrent classZi. For anyj there must existk such that(P̂k, Q̂k) =
(Pj , Qj). While each state in a recurrent class must have the same support over
the set of all languages, the actual number of players speaking each language can
vary from state to state. However, the number of players speaking each aligned
language is constant across all of the states in the recurrent class. This is because
agents speaking aligned languages never change languages so long as they have
neighbors, a claim we establish with the following lemma.

Lemma A3.1: Suppose that the state(P,Q) contains an aligned language
(Pi, Qi) with |hi(P,Q)| ≥ 1 then each

î ∈ arg max
j∈hi(P,Q)

∑

k∈hi(P,Q)

trace(PjQk + PkQj), (63)

satisfies(Pî, Qî) = (Pi, Qi).

Proof: By the definition of the neighborhoodhi(P,Q) we have

trace(PiQj + PjQi) ≥ 2n− 1, (64)

for eachj ∈ hi(P,Q). Neighbors of an agent speaking an aligned language either
speak the same aligned language or possess a zero column. If agentj ∈ hi(P,Q)
possess a zero column then for anyk ∈ hi(P,Q) we have

trace(PkQj + PjQk) ≤ 2n− 1, (65)

andtrace(PjQj +PjQj) ≤ 2n− 2, so(Pi, Qi) outperforms(Pj , Qj) against all
members ofhi(P,Q) and does so strictly against(Pj , Qj). �

Since the number of agents speaking any aligned language is non-decreasing
for any state trajectory in the recurrent class, all states in each recurrent class must
have the same number of agents speaking each aligned language.



Consider recurrent classes containing one or more aligned languages. A prob-
ability ǫ event is sufficient to move one agent from a language that is not aligned
to one of the aligned languages present in the recurrent class. It does not matter
which state we apply the perturbation from. This new state may be transient, but
we are guaranteed to reach a new recurrent class with striclymore agents speaking
aligned languages. This fact follows from the preceding lemma. Proceeding like
this we can reach an abosrbing state in which all agents speakaligned languages.
Agents can then switch from one aligned language to another via probabilityǫ
events so that we reach a state inO and we required only transitions between
absorbing states having resistance equal to onee.

Next, consider a recurrent classZk without any aligned languages. In this case
each state(P,Q) ∈ Zk contains some agenti achieving

trace(PiQi) = max
j

trace(PjQj) ≡ c(Zk). (66)

We can reach a state that increases this constant by one via a single ǫ probability
event. Further, this can be done in such a manner that the agent speaking the new
language will have a non-empty neighborhood.

Lemma A3.2: Supposetrace(PQ) ≤ n− 1. Then there exists another language
(P̂ , Q̂) satisftying

trace(P̂ Q̂) = trace(PQ) + 1, (67)

and
trace(P̂Q+ PQ̂) ≥ r = 2n− 1. (68)

Proof: Assume thatP has no zero columns and let̂Q = P ′. The proof whenP
has a zero column is symmetric. Let

C = {j :
∑

k

PjkQkj = 0}, (69)

the set of indices of columns ofQ that do not contribute totrace(PQ). The matrix
Q has at most one zero column. First, supposeQ has a zero column and let

C1 = {j ∈ C :
∑

k

Qkj > 0}, (70)

the set of indices inC of non-zero columns ofQ. Next, let

P̂ij =











1, i ∈ C1, j = min{argmaxk Qki}

0, i ∈ C1, j 6= min{argmaxk Qki}

Pij , otherwise.

(71)

eWe will ignore redundancy in our construction since we can always merge paths to eliminate any
redundancies in a resistance tree at the end



This way, each row of̂P in C1 is confined to the support of the corresponding
column inQ. Thus,

trace(P̂Q) =
∑

i∈C1

∑

j

P̂ijQji +
∑

i∈Cc

∑

j

P̂ijQji +
∑

i∈C−C1

∑

j

P̂ijQji (72)

≥
∑

i∈C1

∑

j

P̂ijQji +
∑

i∈Cc

∑

j

P̂ijQji (73)

=
∑

i∈C1

∑

j=min{argmaxk Qki}

Qji +
∑

i∈Cc

∑

j

P̂ijQji (74)

= |C1|+
∑

i∈Cc

∑

j

PijQji = |C1|+ |Cc| = n− 1, (75)

which combined withtrace(PQ̂) = trace(PP ′) = n establishes the first claim
of the lemma. The second claim of the lemma is verified by computing

trace(P̂ Q̂) =
∑

i∈C1

∑

j

P̂ijQ̂ji +
∑

i∈Cc

∑

j

P̂ijQ̂ji +
∑

i∈C−C1

∑

j

P̂ijQ̂ji (76)

≥
∑

i∈Cc

∑

j

P̂ijQ̂ji +
∑

i∈C−C1

∑

j

P̂ijQ̂ji (77)

=
∑

i∈Cc

∑

j

PijPij +
∑

i∈C−C1

∑

j

PijPij (78)

= |Cc|+ |C − C1| = trace(PQ) + 1. (79)

To complete the proof of the lemma we instead suppose thatQ has no zero
column. We define the setC0 ⊂ C so thatj ∈ C0 ⇒

∑

k Qkj > 0 and
|C0| = |C1| − 1. Put another way,C0 is any set obtained by removing any one
column index fromC1. Next, let

P̂ij =

{

Qji, i ∈ C0

Pij , otherwise,
(80)

giving,

trace(P̂Q) =
∑

i∈C0

∑

j

P̂ijQji +
∑

i∈Cc

∑

j

P̂ijQji +
∑

i∈C−C0

∑

j

P̂ijQji (81)

≥
∑

i∈C0

∑

j

P̂ijQji +
∑

i∈Cc

∑

j

P̂ijQji (82)

=
∑

i∈C0

∑

j

QjiQji +
∑

i∈Cc

∑

j

P̂ijQji (83)

= |C0|+
∑

i∈Cc

∑

j

PijQji = |C0|+ |Cc| = n− 1, (84)



as required. Lastly,

trace(P̂ Q̂) =
∑

i∈C0

∑

j

P̂ijQ̂ji +
∑

i∈Cc

∑

j

P̂ijQ̂ji +
∑

i∈C−C0

∑

j

P̂ijQ̂ji (85)

≥
∑

i∈Cc

∑

j

P̂ijQ̂ji +
∑

i∈C−C0

∑

j

P̂ijQ̂ji (86)

=
∑

i∈Cc

∑

j

PijPij +
∑

i∈C−C0

∑

j

PijPij (87)

= |Cc|+ |C − C0| = trace(PQ) + 1, (88)

completing the proof.�
While the new state may be transient, we reach a recurrent class containing

the new language. This is because the last speaker of this newlanguage never
abandons her language so long as she has a neighbor.

Lemma A3.3: Suppose that the state(P,Q) contains a language(Pi, Qi) with
|hi(P,Q)| ≥ 1 such that for allj 6= i we have(Pj , Qj) 6= (Pi, Qi). Further
suppose

trace(PiQi) > max
j 6=i

trace(PjQj), (89)

then
i = arg max

j∈hi(P,Q)

∑

k∈hi(P,Q)

trace(PjQk + PkQj). (90)

Proof: By the definition of the neighborhoodhi(P,Q) and the uniqueness of
(Pi, Qi) we havetrace(PiQj + PjQi) ≥ 2n − 1 for eachj ∈ hi(P,Q). Each
other languagej ∈ hi(P,Q) hastrace(PjQj) < trace(PiQi) ≤ n so it achieves
a payoff of at most2n− 2 against itself, while(Pi, Qi) achieves at least2n− 1.
Since(Pi, Qi) outperforms each language strictly against at least one other lan-
guage in the neighborhood (namely, the language itself), itneed only match that
language against all other languages. Thus it is sufficient to show that for any two
agentsk, j ∈ hi(P,Q) with k 6= j we havetrace(PkQj + PjQk) ≤ 2n − 1.
Assume the contrary, i.e. that there exist two agentsk andj with k 6= j satisfying
trace(PkQj + PjQk) = 2n. This requiresPk = Q′

j andPj = Q′
k. Now sincej

is in hi(P,Q) we know that eitherPj = Q′
i orQj = P ′

i because one of thetrace
terms must equaln. We will deal with the former case only since the latter will
then follow from symmetry. By the same reasoning we have thateitherPk = Q′

i

orQk = P ′
i . If Pk = Q′

i then

n = trace(PjQk) = trace(PkQk) < n, (91)

a contradiction. IfQk = P ′
i then

n = trace(PjQk) = trace(Q′
iP

′
i ) = trace(PiQi). (92)



If trace(PiQi) = n then all its neighbors possess a zero column, so that at least
one of the requirementsPk = Q′

j orPj = Q′
k will violate row stochasticity.�

Of course, we must guarantee that she continues to have a neighbor on the way
to the recurrent class. The next lemma establishes that the last of the neighbors of
the agent speaking the new language never abandons her language. That is, unless
she abandons her language for the new language. This can happen only if the new
language is aligned, but in that case we have reached the scenario described above
and are done.

Lemma A3.4: Suppose that the state(P,Q) contains a language(Pi, Qi) with
|hi(P,Q)| ≥ 1 such that for allj 6= i we have(Pj , Qj) 6= (Pi, Qi). Further
suppose

trace(PiQi) ≤ n− 1, (93)

then either (i),

i = arg max
j∈hi(P,Q)

∑

k∈hi(P,Q)

trace(PjQk + PkQj), (94)

or (ii), there exists(P̂ , Q̂) such that for all

î ∈ arg max
j∈hi(P,Q)

∑

k∈hi(P,Q)

trace(PjQk + PkQj), (95)

(Pî, Qî) = (P̂ , Q̂) andtrace(P̂ Q̂) = n.

Proof: We know that for eachj ∈ hi(P,Q) we have

trace(PiQj + PjQi) ≥ 2n− 1. (96)

Consider any two agentsk, j ∈ hi(P,Q) and assume

trace(PkQj + PjQk) = 2n. (97)

If this is not possible then (i) obtains. Supposing it is possible we havePk = Q′
j

andPj = Q′
k. Now sincej is in hi(P,Q) we know that eitherPj = Q′

i or
Qj = P ′

i because one of thetrace terms must equaln. We will deal with the
former case only since the latter will then follow from symmetry. By the same
reasoning we have that eitherPk = Q′

i orQk = P ′
i . If Qk = P ′

i then

n = trace(PjQk) = trace(Q′
iP

′
i ) = trace(PiQi), (98)

a contradiction. ThusPk = Q′
i so that

n = trace(PjQk) = trace(PkQk), (99)



so that if (i) does not obtain, then (ii) obtains because onlyaligned languages can
outperform(Pi, Qi) against its own neighbors.�

We can apply the above method inductively so thatc(Zk) increases by one for
each recurrent classZk visited. We eventually reach a recurrent class containing
an aligned language, from which point we have already established the existence
of a suitable path to a state inO. From these states inO all departing edges have
resistance at least two. For a resistance tree rooted at a state in x ∈ O, consider
y ∈ O, y 6= x. From any such statey we can move two players to the aligned
language inx, giving a new abosrbing state that achieves the minimum resistance
from y of two. Then, we can move one player at a time to the aligned language
in x, achieving a resistance of one for each abosrbing state on our way tox. It
follows that

γ(x) = µ(x) = γO = 2(|O| − 1) + |Oc| (100)

For any other recurrent classy /∈ O it is sufficient to note that any resistance tree
has one more edge emanating from a state inO, so that

γ(y) ≥ µ(y) = 2|O|+ |Oc| − 1 > γO, (101)

completing the proof.�


