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In algorithmic game theory, the price of anarchy framework studies efficiency loss in decentralized environ-
ments. In optimization and decision theory, the price of robustness framework explores the tradeoffs between
optimality and robustness in the case of single agent decision making under uncertainty. We establish a con-
nection between the two that provides a novel analytic framework for proving tight performance guarantees
for distributed systems in uncertain environments. We present applications of this framework to novel vari-
ants of atomic congestion games with uncertain costs, for which we provide tight performance bounds under
a wide range of risk attitudes. Our results establish that the individual’s attitude towards uncertainty has a
critical effect on system performance and should therefore be a subject of close and systematic investigation.
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1. INTRODUCTION
Ever since its introduction in [Koutsoupias and Papadimitriou 1999], the price of an-
archy framework has played a key role in the formalized study of efficiency loss in
competitive environments due to the lack of centralized control. Defined as the ratio
between the social welfare at the worst Nash equilibrium and its optimal value, the
price of anarchy embodies several desirable attributes. Conceptually simple and inter-
esting, concise in representation, and analytically tractable, as it has proven to be in
a wide range of settings, the price of anarchy has had a significant impact on the way
we perceive and argue about systems.

Naturally, any theoretical analysis of real-world social or technological networks in-
troduces simplifying assumptions that could potentially lead to significant divergence
between our theoretical predictions and the actual system behavior. In fact, a key as-
pect of any such systematic investigation is distinguishing those modeling parameters
that can be safely ignored from those that have a dominant impact and carefully ex-
ploring the latter subspace. Such concerns about modeling imprecisions are especially
relevant when it comes to the study of socioeconomic phenomena since the “ground
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truth” of human nature and decision making is inherently complex and intractable in
its full generality.

Nevertheless, during the last 70 years, a long line of work spanning economics, psy-
chology, philosophy, mathematics, and statistics has been focused exactly on captur-
ing the values, uncertainties and other primary factors relevant to rational decision
making. Modern decision theory along with stochastic/robust optimization have cod-
ified different approaches to decision making under uncertainty. These models mark
a wide range of departures from expectation maximization. Some of the models are
inspired by the realities of everyday decision making and our limitations in perceiving
accurately and responding optimally to all the subtleties of an uncertain environment.
Others approaches are focused on the other extreme of the spectrum of cognitive abil-
ities. Their goal is to design efficient algorithmic procedures which, based on compu-
tational preprocessing and intricate estimation techniques, allow for provably optimal
nontrivial performance guarantees. For example, a company might wish to identify a
strategic course of action which guarantees for itself the highest possible revenue for
the coming year outside a 1% window of the worst case realizations of uncertainty, i.e.,
catastrophic scenarios. This exploration of the tradeoffs between robustness and op-
timality, sometimes referred to as Price of Robustness [Aghassi and Bertsimas 2006;
Bertsimas et al. 2011], has been the subject of intensive research within modern opti-
mization theory.

These decision making models are not merely relevant to game theory but they were
introduced as a direct response to the theoretical challenge of coupled decision making.
In any game theoretic setting, even in the classic full information case, given any mixed
strategy profile, the agents are required to solve an optimization problem under un-
certainty. The seminal works by von Neumann [von Neumann and Morgenstern 1944],
Nash [Nash 1951] and Harsanyi [Harsanyi 1967], have laid the expectation maximiza-
tion framework on such strong foundations within the game theory community that
only recently have early steps been taken away from it [Aghassi and Bertsimas 2006;
McKelvey and Palfrey 1995]. Even these works, however, are primarily definitional fo-
cusing on establishing fixed point theorems under different decision theoretic models.
In contrast, the price of anarchy framework seems like an ideal testing ground for a
quantitative study of the implications of merging decision theory under uncertainty
and game theory. In this work, we wish to show how settings with uncertain payoffs
coupled with risk-aware agents may indeed not only be analytically tractable but fur-
thermore hold the promise of revealing novel and sometimes surprising insights about
well-studied competitive settings.

Our work focuses on a variant of a classic class of games within the price of an-
archy framework, atomic congestion games with affine cost functions [Christodoulou
and Koutsoupias 2005]. Such games abstractly capture the effects of everyday routing
decisions and how they get translated to congestion on the road. In order to intuitively
understand how different decision theoretic protocols are a natural and integral part
of this setting, let’s consider an actual commuter deciding upon a route from her home
to her office.

On any given morning, the driver, Alice, might be indifferent between arriving at her
office a few minutes earlier or later, so picking the route with the minimal expected la-
tency seems like a reasonable choice. Of course, even estimating the actual expected la-
tency is a task that requires some mental overhead of remembering unexpected events
in the past that affected her arrival time (e.g., heavy rain with .01%, traffic accidents
.02%). An easier alternative is to implicitly assume that this is a “typical day”. This
average case analysis smooths out atypical events and allows for effortless decision
making. On other occasions (e.g., when giving a presentation at work), the same in-
dividual, faced with the same optimization problem, is now much more sensitive to
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Table I. Price of anarchy of linear congestion games
under u.i.d. schedulers.

Principle Price of Anarchy

Wald’s minimax cost 2
Savage’s minimax regret [4/3, 3]1

Minimizing Expected cost 5/3
Average case analysis 5/3
Win-or-Go-Home unbounded
Second moment method unbounded

unfortunate rare events. In this case, Alice may subconsciously overestimate the pos-
sibility of bad events, heavily penalizing routes with high variance of arrival times.
In fact, in the case where on time arrival is absolutely critical, she might be willing
to go through a lengthy detour of backroads where congestion effects are not a factor.
Finally, Alice’s everyday challenge is furthermore complicated by her coworker and
neighbor, Bob. Bob is rather vocal about his uncanny prowess in picking fast routes.
These differences between her actual arrival time and that of the best route in hind-
sight are sometimes the cause of regret and may affect future decisions. Of course,
these effects are only aggravated on rainy days, since as fate would have it, there is
only a single parking spot outside their office and whoever gets there first takes it
whereas the other one must walk in the rain. A race it is then.

The paragraph above hopefully conveys that we can expect a wide range of attitudes
towards uncertainty to materialize in our everyday experiences. Moreover, these atti-
tudes are not necessarily tied to the nature of the specific optimization problem. They
are not even necessarily hard-coded personality traits of different individuals, but may
depend on the context that is not even present in the mathematical formulation of
the setting. What are the effects of this interwoven net of unspoken and sometimes
unconscious attitudes to the hard bottom-line of the realized system performance? In-
terestingly, and perhaps distressingly, our results formally show that this single risk
parameter can completely dictate system performance. Attitude is, indeed, everything.

We introduce uncertainty in linear congestion games by inserting a randomized
scheduler on each congested element. The experienced latency by any user on a ma-
chine is a random variable depending both on the load of the machine and on the
random ordering of the individual. Intuitively, similarly to the case of a printer that
receives a number of requests simultaneously, the jobs get processed in some order
and each job gets burdened only by those requests that get assigned ahead of it in the
queue. Although this source of uncertainty is quite naturally motivated in itself, an
added feature of this approach is that, in any outcome of the game, the total experi-
enced latency on any element (and on the system as a whole) is deterministic. There-
fore, regardless of the risk attitudes of the agents, the optimal social cost is uniquely
defined. Changes in the price of anarchy can only reflect the fact that different risk
attitudes give rise to different stable states. As Table I indicates, our analysis provides
tight bounds on the price of anarchy under a wide range of decision making principles.2

1These bounds hold in the case of symmetric load balancing games. We also show a stronger lower bound of
5/3 in the general case.
2We should note here that our results do not critically depend on the assumption that the ordering of each
job on each machine is chosen uniformly and independently at random. For example, our results under
Wald’s minimax cost principle carry over even in cases of globally correlated (possibly adversarial) schedul-
ing policies. We choose not to focus on these technical facts in the intro in favor of a more uniform and simple
exposition. The interested reader can explore them in more detail in the main part of the paper.
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In the rest of this paper, we provide an overview of work on decision making under
uncertainty as well as earlier price of anarchy related work. Section 3 contains a de-
tailed exposition of the single agent decision making framework, whereas Section 4
combines uncertain decision making with games of uncertain payoffs, explicitly focus-
ing on the case of congestion games with randomized scheduling policies. Sections 5-10
present the price of anarchy analysis for each of the following decision making prin-
ciples: risk-neutral stochastic optimization (i.e., optimizing expectation), average case
analysis, Wald’s minimax principle, second moment stochastic optimization, win-or-go-
home principle and Savage’s minimax regret principle. Finally, Section 11 concludes
with discussion about future directions on the intersection of decision theory under
uncertainty and game theory.

2. RELATED WORK
There are many different ways to make decisions in uncertain environments, and con-
sequently, to model a game in which the agents need to make such decisions. Stochastic
programming is an entire field (e.g., see textbooks [Prékopa 1995; Birge and Louveaux
1997; Shapiro et al. 2009]), yet it is just one approach to optimization under uncer-
tainty. It is most commonly used to capture risk-neutral agents as its typical objective
function is expected cost. Robust optimization (e.g., [Ben-Tal et al. 2009; Bertsimas
et al. 2011]), at the other end of the spectrum, is suitable for infinitely risk-averse
agents as it seeks the best possible worst-case outcome. The robust framework has
been the focus of a lot of work within operations research and related fields.

Risk-averse optimization aims to bridge the gap between the two extreme risk atti-
tudes, by considering more moderate and realistic models of risk. In fact, this is not
yet a well-defined field, since multiple competing approaches to modeling risk are pur-
sued in different communities. In economics, a common approach for modeling risk
is via utility functions [Neumann and Morgenstern 1944] and, consequently, various
alternatives to expected utility theory have been proposed, including weighted util-
ity theory, prospect theory and the theory of ambiguity aversion [Machina 1987]. In
finance, the mathematical study of risk for portfolio selection started with the mean-
variance framework of Markowitz [Markowitz 1952]. More recently, due to a variety
of paradoxes and pitfalls of the traditional approaches, an axiomatic approach to risk
has been proposed [Artzner et al. 1999; Rockafellar 2007], considering coherent and
convex risk measures. Such risk models have yet to be incorporated in a systematic
way into formal algorithmic study and algorithmic game theory models.

A noteworthy special case of risk preference is captured in chance-constrained op-
timization (e.g., [Uryasev 2000; Boţ et al. 2007]), where constraints with uncertain
variables are required to hold with at least a given probability. Algorithmic work on
risk for combinatorial problems has considered a variety of models, including mean-
risk optimization, value-at-risk and probabilistic (chance) constraints (e.g., [Nikolova
et al. 2006; Srinivasan 2007; Nikolova 2010; Swamy 2011]).

Games of incomplete information have been the subject of recent focus within the
price of anarchy literature [Caragiannis et al. 2012; Paes Leme and Tardos 2010;
Christodoulou et al. 2008; Lucier and Paes Leme 2011; Lucier and Borodin 2010;
Syrgkanis 2012; Gairing and Tiemann. 2005; Garg and Narahari 2005; Georgiou et al.
2006]. Typically, the randomness is introduced via sampling the agent types randomly
and independently from a commonly known distribution. Furthermore, the assump-
tion of risk neutral agents is ubiquitous. Roughgarden has shown that the analysis
of such settings essentially reduces to the deterministic case [Roughgarden 2012]. In
our work, types are dependent and furthermore our results in the case of robust op-
timizing agents trivially extend even to cases where the agents hold different beliefs
about the underlying type distribution. Moreover, our focus is on breaking away from
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the convention of risk-neutral agents and exploring the implications of different risk
attitudes.

The idea of introducing randomized scheduling policies on each congested ele-
ment was inspired by machine scheduling ([Heydenreich et al. 2007], and references
therein). However, the two settings are quite distinct. Typically, in machine schedul-
ing the set of strategies for each job consists of singletons (i.e., individual machines),
whereas our setting has a nontrivial topology (routing network). On the other hand,
in machine scheduling jobs come in different sizes and the completion time on each
machine can in the most general case be an arbitrary function of each (job, machine)
pair. More importantly, the end goals of the two approaches are decidedly different.
Mechanism design for machine scheduling aims at designing simple scheduling poli-
cies such that risk neutral agents converge to almost optimal outcomes. In our setting,
the schedulers are used as an abstraction to model uncertainty. They are used to in-
fuse uncertainty, sometimes even in an adversarial and correlated manner. The goal is
not to guide the users but to provide a challenging setting so as to test the efficiency of
different risk-sensitive decision models.

Little attention has been paid so far within algorithmic game theory to cases where
the agents are not expectation maximizers. Fiat and Papadimitriou consider games
with deterministic payoffs and incorporate risk resulting from mixed strategies via
mean-variance and other objectives [Fiat and Papadimitriou 2010]. Mavronicolas and
Monien also consider mean-variance objectives for mixed equilibria and prove a PLS-
completeness result for computing such equilibria [Mavronicolas and Monien 2012].
Perhaps most closely related to our model of uncertain payoffs is the stochastic self-
ish routing model of Nikolova and Stier-Moses where the edge latency functions are
independent random variables with finite first and second moments [Nikolova and
Stier-Moses 2011].

Aghassi and Bertsimas present a robust game theory model where the payoffs come
from bounded uncertainty sets and the agents assume adversarial realizations of un-
certainty. They show that fixed point theorems imply existence results for their equilib-
rium notion [Aghassi and Bertsimas 2006]. Our model of win-lose games was inspired
by Immorlica et al. [Immorlica et al. 2011]. At a high level, the interplay of the deci-
sion making process of a single agent and the price of anarchy is related to the work
on lookahead search in game playing by Mirrokni, Thain and Vetta [Mirrokni et al.
2012]. Back to uncertain payoffs, stochastic games from game theory, first introduced
by Shapley [Shapley 1953], refer to dynamic games in which agents make probabilis-
tic transitions (e.g., see [Neyman and Sorin 2003; Filar and Vrieze 1996]). They are
a generalization of Markov Decision Processes [Puterman 1994] and as such are very
different from the offline optimization setting for agent actions we consider here.

In a related tangent, the price of uncertainty [Balcan et al. 2009; Balcan et al. 2011]
studies the worst case implications to best response dynamics of small but adversar-
ially selected fluctuations to the experienced cost of the agents. Results in this case
tend to be negative. Carefully designed realizations of uncertainty combined with risk
oblivious agents allow for small mistakes to pile up over time. In contrast, we show
that even adversarial uncertainty of large magnitude can be effectively dealt away
with by carefully chosen risk attitudes and approximately optimal global performance
can be guaranteed.

3. SINGLE AGENT DECISION MAKING UNDER UNCERTAINTY
To describe the issues involved in game theoretic settings under uncertainty, we start
with the simpler single agent optimization setting that corresponds to decision making
under uncertainty. Our setting will be built upon a static optimization problem under
uncertainty.
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A problem of optimization under uncertainty, which we will denote by (S; Ω; c; p),
is specified by a feasible set S, a (possibly unknown) distribution p over the state of
nature, ω, chosen from set Ω, and an objective cost function c : S × Ω → �. We will
assume this set S to be finite.

Over the last 60 years, work in decision theory has identified and formalized several
different behavioral approaches to such uncertain environments. They are typically
partitioned into the following two classes: a) robust optimization, whose guarantees
hold even under worst case realizations of state uncertainty, and b) stochastic opti-
mization, that utilizes the distribution p over the uncertainty set and in some sense
provides an “average-case” analysis. Next, we will review some of these approaches in
more detail.

3.1. Robust optimization
Robust optimization techniques can be applied to any uncertain setting, regardless
of having any distributional knowledge about the nature of the uncertainty. The re-
curring idea here is that we will always assume that the sources of uncertainty (e.g.,
nature) act adversarially and once we commit to an action, the worst possible scenario
(for that action) will be realized.

Wald’s minimax (cost) principle
Wald’s minimax principle [Wald 1939] is a deterministic decision-making model ac-
cording to which decisions are ranked on the basis of their worst-case outcomes.
Namely, the chosen decision is the one whose worst outcome is at least as good as the
worst outcome of any other decision. Formally, Wald’s minimax approach corresponds
to solving the following deterministic problem:

min
s∈S

max
ω∈Ω

c(s, ω)

This model represents a 2-person game in which the min optimization player plays
first. In response, the second player (nature) selects the worst state in Ω, namely a
state that maximizes the cost c(s, ω). The above model is the “classic” format of Wald’s
maximin model. There is an equivalent optimization or mathematical programming
format:

min
s∈S, z∈�

{z : z ≥ c(s, ω), ∀ω ∈ Ω}

Essentially, any decision s is assigned an (implied) cost maxω∈Ω c(s, ω). This is usually
referred to as “the security level” of decision s.

Savage’s minimax regret principle
Savage’s minimax regret principle [Savage 1951] is an application of Wald’s minimax
model to the ‘regret’ associated with the agent decision. It can be formulated as follows:

min
s∈S

max
ω∈Ω

(
c(s, ω)− min

s ′∈S
c(s ′, ω)

)
where the term in the parenthesis captures the regret r(s, ω) of the cost function c
associated with the (decision, state) pair (s, ω).

3.2. Stochastic optimization
Robust optimization offers deterministic guarantees about the quality of the chosen
decision. This power, however, comes at a cost since its proposed solutions may be
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overly conservative. Stochastic optimization utilizes extra information about the state
uncertainty (e.g., a known probability distribution over the system states) to identify
decisions of high average-case performance. Within this framework, several alternative
decision-making principles have been identified.

Minimizing expected cost (risk-neutral agents)
In the case where the probability distribution p over the system states Ω is known, or
at least can be estimated (e.g., by using historical data and/or a priori information), the
optimal action for a risk neutral optimizer is the one that minimizes her expected cost.
Formally, this corresponds to solving the following stochastic optimization problem:

min
s∈S

Eω∼p[c(s, ω)]

Average case analysis
A less taxing computational heuristic for identifying solutions with good-on-average
performance guarantees returns the optimal solution for the optimization problem in
the expected state of the system. Namely, the random variable ω is replaced by its
mean Eω∼p[ω], leading to the following deterministic optimization problem:

min
s∈S

c
(
s,Eω∼p[ω]

)
The resulting optimal solution x is sometimes called an average case solution or an

expected value solution. This technique is not always applicable3 and, even if it is, it
does not necessarily translate to meaningful performance guarantees. Nevertheless,
computationally it is rather inexpensive and hence it allows for a “quick fix” approach
against which the performance of more sophisticated methods can be judged.

Win-or-Go-Home approach
This approach also optimizes the expected value of a specific random variable. Here,
the random variable is an indicator variable that our chosen action outperforms an-
other benchmark action (e.g., an action chosen by an opponent). Equivalently, we are
trying to maximize the probability of winning:

Prω∼p[c(s, ω) ≤ copponent(s
′, ω)]

In the case of ties above, we break them in favor of our chosen action. A less biased
rule would choose a winner uniformly at random. Generally, such rules can be extended
using numerous tie-breaking rules (e.g., lexicographically, randomly, etc.). This line of
thinking can also be trivially extended to include more than one opponent in which
case we are trying to maximize the probability of outperforming all. This approach
is especially well suited for competitive optimization settings under uncertainty [Im-
morlica et al. 2011] where the optimizers do not care about their actual performance
but about outperforming their opponents (e.g., heads-up contest, coming first in a race,
etc.).

Incorporating second moments
So far, the decision-maker tries to optimize some cost function on average. However,
the realized cost c(s, ω) could be significantly different from the corresponding expected

3It is not always the case that the notion of expected system state is meaningful or that the cost function
actually extends to these states.
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Table II. Decision Making under Uncertainty

Principle Implied Cost Function

Wald’s minimax cost maxω∈Ω c(s, ω)
Savage’s minimax regret maxω∈Ω

(
c(s, ω)−mins ′∈S c(s ′, ω)

)
Minimizing Expected cost Eω∼p[c(s, ω)]
Average case analysis c

(
s,Eω∼p[ω]

)
Win-or-Go-Home 1− Prω∼p[c(s, ω) ≤ copponent(s

′, ω)]
Second moment method Eω∼p[c(s, ω)] + γ · Varω∼p[c(s, ω)]

value Eω∼p[c(s, ω)], depending on the particular realization of the system state ω. Con-
sidering c(s, ω) as a random variable, we can hedge against such events by incorporat-
ing in our calculation the variance Var[(s, ω)] of the action’s cost.

min
s∈S

(
Eω∼p[c(s, ω)] + γ · Varω∼p[c(s, ω)]

)
The coefficient γ ≥ 0 represents the weight given to the conservative part of the

decision. As γ grows to infinity, the above optimization problem tries to find a solution
with minimal variance, while if γ = 0, this problem reduces to the standard risk neu-
tral cost optimization. Note that since the variance is itself an expected value, from a
mathematical point of view these problems still fall under the expectation minimiza-
tion perspective. Other approaches could incorporate the standard deviation in place
of the variance.

4. CONGESTION GAMES WITH SCHEDULING POLICIES
4.1. Congestion games
Congestion games [Rosenthal 1973] are non-cooperative games in which the utility of
each agent depends only on the agent’s strategy and the number of other agents that
either choose the same strategy, or some strategy that “overlaps” with it. Formally, a
congestion game is defined by the tuple (N ;E; (Si)i∈N ; (ce)e∈E) where N is the set of
agents, E is a set of resources (also known as edges or bins or facilities), and each agent i
has a set Si of subsets of E (Si ⊆ 2E). Each strategy si ∈ Si is a set of edges (a path), and
ce is a cost (negative utility) function associated with facility e. For a strategy profile
s = (s1, s2, . . . , sN ), the cost of agent i is given by ci(s) =

∑
e∈si

ce(ℓe(s)), where ℓe(s) is
the number of agents using e in s (the load of edge e). Congestion games admit a poten-
tial function Φ(s) =

∑
e∈E

∑ℓe(s)
j=1 ce(j), which captures each agent’s incentive to change

her strategy [Rosenthal 1973]. Specifically, given a strategy profile s = (s1, s2, . . . , sN ),
and strategy s′i of agent i, we have ci(s

′
i, s−i) − ci(s) = Φ(s′i, s−i) − Φ(s). As a result,

starting from any strategy profile, any sequence of improving moves is bound to termi-
nate. Such stable states s ∈ S where for each agent i and s′i ∈ Si, ci(s′i, s−i) ≥ ci(s) are
called Nash equilibria. The set of Nash equilibria can be found by simply locating the
local optima of Φ(S). In this work, we will focus on linear congestion games where the
latency functions are of the form ce(x) = aexe + be where ae, be ≥ 0. Furthermore, the
social cost will correspond to the sum of the costs of all the agents

∑
i ci(s). The price

of anarchy is defined as:

PoA(G)=
maxs∈NE Social Cost(s)

mins∗∈×iSi Social Cost(s∗)
.
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4.2. Congestion games with randomized scheduling policies
We will begin the discussion with an informal, high level description of our model.
In a classic congestion game all agents using a specific resource experience the same
latency as is defined by the total number of the agents using a resource. Here, we will
assume that the agents using any machine are assigned an ordering (e.g., they enter
a queue) and the latency of an agent only depends on the number of other agents that
precede her in the queue. The ordering decisions on each individual machine are made
according to some probability distribution. As a result, the rank of each agent on each
machine (and therefore her respective experienced latency) is a random variable. This
defines a strategic game with uncertain cost functions. Our goal will be to analyze the
nature and efficiency of its stable states under different decision-theoretic approaches
to environmental uncertainty.

More formally, we extend the standard congestion game setting by introducing a
randomized scheduling policy on each edge e. The scheduler chooses probabilistically a
ranking (permutation) over all agents. We denote the rank of agent i using resource e
by re(i). This is a random variable taking values {1, 2, . . . , N}. Finally, the cost of agent
i using a set of resources s can be expressed as ci(s) =

∑
e∈Si

ce(
∑

j:e∈sj∧re(j)≤re(i)
1),

since it is only affected by the number of agents that appear earlier than her on each
machine e ∈ S. The social welfare of the system is defined in its standard form as the
sum of the costs of the agents.

Although there are several ways of introducing uncertainty in a congestion game,
our approach is especially well suited to study the effects of different decision-theoretic
principles on the efficiency of these games. As we will argue, our setting allows to study
the effects of different optimization approaches in isolation of other factors influencing
the price of anarchy. Indeed, note first that the social welfare of any outcome is deter-
ministic. The individual cost of any user on a machine is dependent on her ordering
on that machine, while the sum of all users’ costs is not.4 This implies that, regardless
of the chosen decision-making process, all of these models agree in terms of which are
the socially optimal states. Furthermore, any two of them assign the same value to any
state, not just the optimal ones.5 As a result, changes in the value of the price of anar-
chy can only be introduced by having different sets of equilibrium states corresponding
to different optimization approaches. For example, an outcome that may be stable for
risk neutral agents might not be stable for agents that apply robust optimization tech-
niques, or the other way around. Naturally, the question that arises is how robust is
the price of anarchy analysis to changes in the risk attitude of the agents? Table I
shows our results in each case.

We will apply each of the different decision-making principles in our setting of con-
gestion games with randomized schedulers. Each principle, when combined with its re-
spective implied cost functions (Table II), induces novel deterministic classes of games.
We will examine the nature of the Nash equilibria of each resulting class and provide
tight characterizations about their price of anarchy (Table I).

Naturally, from the perspective of the system designer a small price of anarchy is
highly desirable since it implies approximately optimal system performance at equi-

4This is true also for other possible choices of social welfare functions such as the makespan, but in the
present paper we will only focus on the total cost of our configuration.
5The efficiency of any state will naturally be estimated according to the experienced (real-world) costs of
the outcomes and not the implied/hypothesized costs of Table II. After all, the implied costs are merely
a mathematical convenience for encoding the decision making process of risk sensitive users in uncertain
environments. These elements are out of the control and possibly the knowledge of the system designer. The
system designer instead cares about the realized system performance and about achieving near optimality
despite lack of control over both agents’ actions and risk attitudes.
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librium. The system designer, as an optimizer, may also have its own attitude towards
risk, which could be different from the ones of the agents participating in the system.
Since in our model of uncertainty the social cost of each state is deterministic, our price
of anarchy bounds hold independently of the risk attitude of the system designer.

5. PRICE OF ANARCHY UNDER RISK NEUTRAL STOCHASTIC OPTIMIZATION
We will commence analysis with the, thus far, standard assumption in algorithmic
game theory of risk neutral agents. The agents here merely wish to minimize their
expected costs. Hence, and in accordance with Table II, we have that the implied cost
C of agent i at strategy profile s is Eω∼p[ci(s, ω)].

Our default assumption about the randomized schedulers on each edge is that they
are independent and that they choose a permutation of the users uniformly at ran-
dom. Nevertheless, we will also discuss possible extensions over which our results still
hold. In this case, it is easy to see that linearity of expectation allows us to drop the
requirement of the schedulers being independent, as long as their marginals are uni-
form over the set of all permutations. Under this assumption, for linear cost functions
the perceived cost of an agent i at outcome s is:

Ci(s) = Eω∼p[ci(s, ω)] =
∑
e∈Si

Eω∼p[ce(
∑

j:e∈sj∧re(j)≤re(i)

1)] =
∑
e∈Si

ℓe(S)(ae
ℓe(s)+1

2 + be)

ℓe(S)
=

=
∑
e∈Si

(ae
ℓe(s) + 1

2
+ be) =

∑
e∈Si

(
ae
2
ℓe(s) +

ae
2

+ be)

It is straightforward to check that starting from any congestion game with affine cost
functions (i.e., ae, be ≥ 0 for all resources e), this transformation through the implied
costs Ci(s) maps us back in the same class. Furthermore, at any strategy profile s (and
for any possible realization of the uncertainty ω) the actual social cost agrees with the
perceived social cost, defined as the sum of perceived user costs

∑
i Ci(s) =

∑
i ci(s, ω)

for all s, ω. So, the price of anarchy for risk neutral agents under affine cost functions is
captured by the price of anarchy of the class of congestion games with cost functions of
the form (ae

2 ℓe(s) +
ae

2 + be) where ae, be ≥ 0. Therefore, it suffices to characterize those
congestion games whose elements have cost functions aex + be with be ≥ ae ≥ 0. One
last equivalent formulation is the class of congestion games with cost functions ce(x) =
ae(x+1)+be, where ae, be ≥ 0. Since this defines a subset of affine congestion games, we
automatically derive an upper bound on the price of anarchy of 5/2 [Christodoulou and
Koutsoupias 2005]. A more thorough analysis will allow us to improve this estimate
by 33% and prove a tight bound of 5/3.

LEMMA 5.1. For every pair of nonnegative integers x, y, it holds

(x+ 2)y ≤ 1

4
x(x+ 1) +

5

4
y(y + 1).

PROOF.

(x+ 2)y ≤ 1

4
x(x+ 1) +

5

4
y(y + 1) ⇔

xy + 2y ≤ x2

4
+

x

4
+

5

4
y2 +

5

4
y ⇔

0 ≤ (
x

2
− y)2 +

x

4
+

y

4
(y − 3) (1)
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The last inequality trivially holds for all nonnegative integers x, y where y ̸= 1, 2. So,
it suffices to check these two special cases separately.

For y = 1, inequality 1 reduces to

0 ≤ (
x

2
− 1)2 +

x

4
− 1

2
⇔

0 ≤ x2 − 3x+ 2 ⇔
0 ≤ (x− 1)(x− 2)

However, the last inequality is indeed true for all (nonnegative) integers x. For y = 2,
inequality 1 reduces to

0 ≤ (
x

2
− 2)2 +

x

4
− 1

2
⇔

0 ≤ x2 − 7x+ 14

However, the last inequality is true for all x.

Next, we will apply Lemma 1 to prove a smoothness bound argument about our
class of congestion games. In the following, C(s) denotes the perceived social welfare at
outcome s, that is

∑
i Ci(s).

LEMMA 5.2. Given any two strategy profiles s, s∗ of a linear congestion game with
uniformly randomizing schedulers, under risk-neutral agents, we have that:∑

i

Ci(s∗i , s−i) ≤
5

4
C(s∗) + 1

4
C(s).

PROOF. Let xe = ℓe(s), ye = ℓe(s
∗). Then,∑

i

Ci(s∗i , s−i) ≤
∑
e

(
ae(xe + 2) + be

)
ye

≤ 5

4

∑
e

(ae(ye + 1) + be
)
ye +

1

4

∑
e

(ae(xe + 1) + be
)
xe

≤ 5

4
C(s∗) + 1

4
C(s).

Lemma 5.2 expresses a (5/4, 1/4)-smoothness argument for our class of games, which
by [Roughgarden 2009] implies that our class of games exhibits price of anarchy of 5/3.

COROLLARY 5.3. The price of anarchy of a linear congestion game with uniformly
randomizing schedulers under risk-neutral agents is at most 5/3.

Next, we will show that our price of anarchy bound is tight for the class of linear con-
gestion games. Furthermore, it is asymptotically tight even for symmetric congestion
games under risk-neutral stochastic optimization. Below we provide explicit construc-
tions of classes of games achieving these lower bounds. These constructions are in-
spired by the work of Christodoulou and Koutsoupias [Christodoulou and Koutsoupias
2005].

THEOREM 5.4. There exist linear congestion games whose price of anarchy under
uniformly randomizing schedulers and risk-neutral agents is equal to 5/3. Further-
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more, for any ϵ > 0, there exist symmetric linear congestion games whose price of an-
archy under uniformly randomizing schedulers and risk-neutral agents is greater than
5
3 − ϵ.

PROOF. We will construct a congestion game for N ≥ 3 players and |E| = 2N
facilities with price of anarchy equal to 5/3. We divide the set E into two subsets
E1 = {h1, . . . , hN} and E2 = {g1, . . . , gN}, each of N facilities. Player i has two pure
strategies: {hi, gi} and {hi+1, gi−1, gi+1}6. The latency functions of the elements in E1

is c(x) = 2x, whereas the latency functions of the elements in E2 is c(x) = x. The
optimal outcome corresponds to the state where each player selects the first strategy
while the worst-case Nash equilibrium is for each player to select the second strategy.
The second outcome is a Nash, since under uniformly random scheduling each agent
experiences an expected cost of 2 + 2 1+2

2 = 5, whereas if she were to deviate she would
experience an expected cost of 2+4

2 + 1+2+3
3 = 5. At the worst Nash equilibrium, the

total expect cost is equal to 5N . At the optimal state, the expected cost is equal to 3N ,
which results in a ratio of 5/3.

We will show how to construct symmetric linear congestion games with price of an-
archy arbitrary close to 5/3 under risk neutral agents. It suffices to show that we can
construct a classic congestion game, in which each element has cost function x+1, and
show that its price of anarchy can be arbitrarily close to 5/37. We construct such games
as follows: We partition the facilities into sets {P1, P2, . . . , Pn} of the same cardinality
and make each Pi a pure strategy. Each Pi contains Nα1+

(
N
2

)
α2 facilities where α1, α2

are appropriate constants to be determined later. We furthermore partition each of the
Nα1 facilities of set Pi into N groups {RPi

1 , . . . , RPi

N }, each of size α1. Similarly, we par-
tition the

(
N
2

)
α2 facilities of set Pi into

(
N
2

)
groups Q {QPi

12, . . . , Q
Pi
ij , . . . , Q

Pi

N−1N} each of
size α2.

The strategies available to each player i will include, besides all the Pi strategies,
strategies (A1, . . . , An) of the following form: Each strategy Ai contains out of each Pj ,
all the facilities in R

Pj

i as well as all facilities in each of the Q
Pj

kl where either k = i or
l = i. As a result, each strategy Ai includes Nα1 +N(N − 1)α2 elements.

The strategy profile (P1, P2, . . . , Pn) is trivially a Nash equilibrium of the game, since
each Pi is an action with a minimal number of facilities (amongst all available actions)
and the load of each facility is optimal (i.e., equal to 1). It is also the social optimal
outcome for the same reason, with a cost for each agent of 2Nα1 +N(N − 1)α2.

We will choose α1, α2, so that the strategy profile (A1, A2, . . . , An) is also a Nash
equilibrium. Now, the cost for each player i is ci(A) = N(2α1 + 3(N − 1)α2). It suffices
to select α1, α2 so that player i will not switch to Pj . (It is straightforward that player
i will not switch to the Nash strategy of some other player k.) The cost after switching
is:

ci(A−i, Pj) = 2α1+3(N−1)α2+3(N−1)α1+4

(
N − 1

2

)
α2 = (3N−1)α1+(N−1)(2N−1)α2

To establish Nash equilibrium it suffices to have ci(A) = ci(A−i, Pj), or equivalently
α1 = (N + 1)α2, which is satisfied when we select α1 = N + 1 and α2 = 1. With this,
the social cost at the (A1, A2, . . . , An) Nash equilibrium is N2(2α1 + 3(N − 1)α2) =

6The indices i should appear as i mod N , but we suppress it for simplicity of notation.
7Indeed, this game would have the same price of anarchy as the corresponding congestion game with edge
cost 2x under uniform schedulers and risk neutral agents.
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N2(5N − 1). The social welfare at the (P1, P2, . . . , Pn) Nash equilibrium is equal to to
N2(3N + 1). Hence, as N goes to infinity, their ratio converges to 5/3.

Combining all results in this section, we derive a complete understanding of the
effects of risk neutral optimization under uniformly randomizing agents in linear con-
gestion games:

THEOREM 5.5. Given any linear congestion game with arbitrary topology and uni-
formly randomizing schedulers, the price of anarchy under risk neutral stochastic opti-
mization is at most 5/3 and this bound is tight.

6. PRICE OF ANARCHY UNDER AVERAGE CASE ANALYSIS
Given any outcome s of a congestion game with randomized schedulers, we can encode
the randomness relevant to agent i via a sequence of variables rie(s) ∈ {1, . . . , ℓe(s)},
which encodes the effective order with which agent i’s job is processed by machine e.
On average, the order of agent i on machine e is merely the expected rank r̂ie(s) =
Eω∼p[r

i
e(s)]. Naturally, this expectation is not always an integer, so the average case

analysis approach is not immediately applicable in our setting. Namely, if we consider
two possible outcomes s, s∗, the superposition of states that corresponds to s (with
probability p) and s∗ (with probability 1 − p) is not a meaningful state. However, one
could extend the setting in a straightforward way so as to include such “mixed” states.
In such a state, the load of each machine is by definition equal to expected load of the
machine with the expectation taken over the pure states of the system. Finally, the
(linear) cost functions can be augmented so that they are defined over all nonnegative
reals (instead of merely nonnegative integers) while preserving the linearity. In our
benchmark setting of uniformly independent randomizing schedulers, this induces a
congestion game with the same set of agents, strategies as in the original game and
cost functions of the form:

Ci(s) = ci
(
s,Eω∼p[ω]

)
=

∑
e∈si

ce
(
Eω∼p[ℓ(s)]

)
=

∑
e∈si

ce(
ℓ(s) + 1

2
).

However, this game is completely isomorphic to the one arising from the case of risk-
neutral agents, so our tight results in that section get immediately translated here:

PROPOSITION 6.1. Given any linear congestion game with arbitrary topology and
uniformly randomizing schedulers, the price of anarchy under the average case analysis
model is at most 5/3 and this bound is tight.

7. PRICE OF ANARCHY UNDER WALD’S MINIMAX PRINCIPLE
In this section, we will provide a price of anarchy analysis in the case where agents
apply robust optimization techniques and specifically Wald’s minimax principle. Fol-
lowing this principle, routes are ranked on the basis of their worst-case (scheduling)
outcomes. In other words, each agent chooses the route with the minimal worst case
latency. As long as each scheduler assigns to each agent i each slot with positive prob-
ability (we will refer to such schedulers as fully randomizing schedulers), the implied
cost of agent i is equal to:

Ci(s) = max
ω∈Ω

ci(s, ω) =
∑
e∈si

ce
(
ℓe(s)) =

∑
e∈si

(
aeℓe(s) + be

)
Namely, we have that this implied-cost game is payoff equivalent to the classic for-

mulation of (linear) congestion games. However, regardless of the decision making pro-
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cess of the agents and its depiction through the implied costs Ci(s), the actual social
welfare at any outcome s is equal to:

Social Cost(s) =
∑
e

ℓe(s)∑
k=1

ce(k) =
∑
e

ℓe(s)∑
k=1

(
aek + be

)
This is true since on each resource e agents are only burdened by the load corre-

sponding to other agents who are ahead of them in the queue. Furthermore, although
the exact ordering and costs of each agent are unclear, there will always be someone
occupying the first, second,. . . , k-th spot. So, the summation of the costs is indeed cap-
tured by the summation above. This summation encodes the standard potential func-
tion for (linear) congestion games. In order to characterize the price of anarchy under
Wald’s minimax principle, it suffices to analyze the classic setting when we define the
social cost to be equal to the potential function

∑
e

∑ℓe(s)
k=1 ce(k). Independently from

us, Caragiannis et al. [Caragiannis et al. 2011] provide an upper bound of 2 for this
term in their approach to efficiently compute approximate Nash equilibria in linear
congestion games. We provide an alternative proof of this statement, which tracks the
involved summands more closely. Our technique extends (at least partially) to the case
of Savage’s minimax principle. Furthermore, we show that this bound is tight. The
complete proof is given in Appendix A. The proof starts by establishing the following
two technical lemmas:

LEMMA 7.1. For α, β ∈ �:

β(α+ 1) =
1

2
α
α+ 1

2
+ 2β

β + 1

2
− α

4
− (α− 2β)2

4
.

LEMMA 7.2. For nonnegative integers xe, x
∗
e ≥ 0:

1

2

∑
e

(
3

4
ae +

be
2
)xe −

1

8

∑
e

ae(xe − 2x∗
e)

2 ≤ 1

4

(∑
e

ae
xe(xe + 1)

2
+

∑
e

bexe

)
.

Next, we combine the lemmas of this section to prove an upper bound of 2 for
the ratio between the value of the potential function Φ(s) =

∑
e

∑ℓe(s)
k=1 ce(k) =∑

e

∑ℓe(s)
k=1

(
aeℓ(s) + be

)
at the worst Nash equilibrium and its optimum value.8

THEOREM 7.3. The value of the potential function Φ(s) =
∑

e

∑ℓe(s)
k=1 ce(k) =∑

e

∑ℓe(s)
k=1

(
aeℓ(s)+be

)
of any linear congestion game at any Nash equilibrium is within

a factor of two of its optimal value.

PROOF. Suppose that (s1, s2, . . . , sn) is a Nash equilibrium of a linear congestion
game and (s∗1, s

∗
2, . . . , s

∗
n) corresponds to the global optimum of the potential function.

Then:

8The optimal value is also achieved at a Nash equilibrium, since it is the global minimizer of the potential.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. 9, No. 4, Article 39, Publication date: June 2013.



Risk Sensitivity of Price of Anarchy under Uncertainty 39:15

Φ(s1, s2, . . . , sn) =
∑
e

xe∑
i=1

(aei+ be)

=
∑
e

ae
xe(xe + 1)

2
+

∑
e

bexe

=
1

2

∑
e

(aexe + be)xe +
1

2

∑
e

(ae + be)xe

=
1

2

∑
i

Ci(s) +
1

2

∑
e

(ae + be)xe

≤ 1

2

∑
i

Ci(s∗i , s−i) +
1

2

∑
e

(ae + be)xe

≤ 1

2

∑
e

(ae(xe + 1) + be)x
∗
e +

1

2

∑
e

(ae + be)xe

=
1

2

∑
e

aex
∗
e(xe + 1) +

1

2

∑
e

bex
∗
e +

1

2

∑
e

(ae + be)xe

=
1

2

(
1

2

∑
e

ae
xe(xe + 1)

2
+ 2

∑
e

ae
x∗
e(x

∗
e + 1)

2
− 1

4

∑
e

aexe −
1

4

∑
e

ae(xe − 2x∗
e)

2

)
+

+
1

2

∑
e

bex
∗
e +

1

2

∑
e

(ae + be)xe from lemma7.1

=
1

4

∑
e

ae
xe(xe + 1)

2
+
∑
e

ae
x∗
e(x

∗
e + 1)

2
+

1

2

∑
e

bex
∗
e −

1

8

∑
e

ae(xe − 2x∗
e)

2 +
1

2

∑
e

(
3

4
ae + be)xe

=
1

4

∑
e

(
ae

xe(xe + 1)

2
+ bexe

)
+
∑
e

(
ae

x∗
e(x

∗
e + 1)

2
+

1

2
bex

∗
e

)
− 1

8

∑
e

ae(xe − 2x∗
e)

2 +

+
1

2

∑
e

(
3

4
ae +

be
2
)xe

≤ 1

4
Φ(s1, s2, . . . , sn) + Φ(s∗1, s

∗
2, . . . , s

∗
n)−

1

8

∑
e

ae(xe − 2x∗
e)

2 +
1

2

∑
e

(
3

4
ae +

be
2
)xe.

By applying Lemma 7.2, we have that:

Φ(s1, s2, . . . , sn) ≤
1

2
Φ(s1, s2, . . . , sn) + Φ(s∗1, s

∗
2, . . . , s

∗
n)

The statement of the theorem follows immediately.

In Appendix A, we also establish that this bound is indeed the best possible.

THEOREM 7.4. There exist linear congestion games such that the maximum ratio
of the value of the potential function Φ(s) =

∑
e

∑ℓe(s)
k=1 ce(k) =

∑
e

∑ℓe(s)
k=1

(
aeℓ(s) + be

)
at any Nash equilibrium and its optimum value is equal to 2. Furthermore, for any
ϵ > 0, there exist linear symmetric congestion games such that the corresponding ratio
is greater that 2− ϵ.
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Combining all the theorems of this section together, we finally derive a tight price of
anarchy analysis in the case of agents applying Wald’s minimax principle:

THEOREM 7.5. Given any linear congestion game with arbitrary topology, and any
set of fully randomized scheduling policies, (even adversarial, correlated), the price of
anarchy under robust optimization is at most 2 and this bound is tight.

8. PRICE OF ANARCHY UNDER SECOND MOMENT STOCHASTIC OPTIMIZATION
Our results under different risk attitudes have been universally positive so far and
actually improving upon the classic 5/2 price of anarchy bound of linear congestion
games. Next, we will show that different approaches to uncertainty can actually have
a detrimental effect on system performance.

PROPOSITION 8.1. Under uniformly randomizing schedulers, for any M ≥ 0, there
exist linear congestion games with only two paths, and γ ≥ 0, such that under γ-
stochastic optimization, their price of anarchy is greater than M .

PROOF. Consider a congestion game of N agents consisting of a network of two par-
allel edges, one with a constant latency of L and another with a linear latency function
ce(x) = x. If the load of the second edge is greater than two, then the variance of the
cost of the edge for each agent would be strictly positive as a result of the random order-
ing of the agents. On the other hand, the variance of the cost of each agent on the first
machine is always zero, since the latency is load (and hence ordering) independent.
Therefore, for any N,L, we can choose a γ large enough so that for any γ-stochastic
optimization agent (whose best response is mins∈S(Eω∼p[c(s, ω)] + γ · Varω∼p[c(s, ω)]))
prefers using the first edge as long as the second edge is occupied by at least one agent.
We will argue that for large enough γ the strategy outcome with exactly one agent
using the linear latency resource is a Nash equilibrium. Indeed, under a uniformly
random scheduling policy and a load of x, the variance of the linear resource will be
equal to x2−1

12 . So, for x ≥ 2 the variance is at least 1/4. Hence, as long as γ > 4L, the
agents using the first resource (experiencing a cost of L) do not benefit by migrating to
the second resource. The single agent on the second resource (experiencing a cost of 1)
similarly does not wish to deviate to the first resource. By picking L = Ω(N2), we have
that the price of anarchy of the resulting class of games is unbounded and the theorem
follows.

9. PRICE OF ANARCHY UNDER WIN-OR-GO-HOME PRINCIPLE
Recall that in this model, we are trying to maximize the probability of outperforming
a benchmark action (e.g., an opponent). Equivalently, we are trying to maximize the
probability of winning:

Prω∼p[c(s, ω) ≤ copponent(s
′, ω)]

In our setting, we can consider all other agents as viable opponents, in which case
we wish to maximize the probability of experiencing the lowest cost amongst all agents
(i.e., arriving first to our destination). We will show that under this risk attitude the
price of anarchy explodes once again.

In the case of ties, we break ties in favor of our chosen action. A less biased rule could
choose a winner uniformly at random. Generally, such rules can be extended using
numerous tie-breaking rules (e.g., lexicographical, random, etc.). Our results trivially
carry over to these models as well. The proof is in Appendix B.
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PROPOSITION 9.1. Under uniformly randomizing schedulers, for any M ≥ 0, there
exist linear congestion games such that under the Win-or-Go-Home principle the price
of anarchy is greater than M .

10. PRICE OF ANARCHY UNDER SAVAGE’S MINIMAX REGRET PRINCIPLE
In this section, we present some preliminary results about price of anarchy in lin-
ear symmetric load balancing games under Savage’s minimax regret principle. Load
balancing games define a special class of congestion games where all strategies are
singletons (i.e., paths of length 1). Finally, symmetric congestion games have the prop-
erty that all agents share the same strategy set. The proofs of this section can be found
in Appendix C.

THEOREM 10.1. The price of anarchy for any symmetric linear load balancing game
under independent uniformly randomizing schedulers and agents applying Savage’s
minimax principle is at most 3. There exist symmetric linear load balancing games
with a price of anarchy of 4/3. Furthermore, there exist linear (non load-balancing)
congestion games with a price of anarchy of 5/3.

11. CONCLUSIONS
In this paper we have introduced risk-sensitive agents in competitive environments
under uncertainty and we have shown that the choice of risk attitudes can be critical to
system performance. Since uncertainty is an inherent characteristic of decentralized
systems and risk attitudes are out of the control of any system designer (and some-
times out of the conscious control of the agents themselves), our results call for a closer
reexamination of competitive settings that were previously thought of as completely
understood. More generally, a principled study of different sources of uncertainty and
their implications to the performance and computational tractability of classic com-
petitive settings would shed much needed light towards a deeper quantitative under-
standing of the implications of risk attitudes.

Our treatment allows us to isolate and examine the effects of a single parameter
(risk attitude towards uncertain cost functions) on system performance. We choose
here to focus on this single issue and show that this parameter single-handedly can
have a critical effect on system performance. Nevertheless, we recognize that there is a
whole host of related issues, which constitute interesting directions for future research.
At the intellectual core of these issues lies the implicit assumption of a permanent,
deterministic and context-free utility function that trivializes the task of choosing be-
tween two (or more) alternatives for each agent. The problem of choice is inherently
an algorithmic one and we believe that sidestepping the rigid assumptions of utility
theory and focusing on it directly holds the promise of exciting new insights.

We believe that this intersection between algorithmic game theory and algorithmic
decision theory including robust/stochastic optimization provides a rather promising
field for future work. Here, algorithmic game theory can move beyond merely address-
ing the computational tractability of old game theoretic concepts but also help lay the
foundational work for a more scalable, robust and realistic theory of socioeconomic
systems.
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APPENDIX
A. PRICE OF ANARCHY ANALYSIS FOR WALD’S MINIMAX PRINCIPLE
We will start off the analysis with the following technical lemma.

LEMMA A.1. For α, β ∈ �:

β(α+ 1) =
1

2
α
α+ 1

2
+ 2β

β + 1

2
− α

4
− (α− 2β)2

4

PROOF.

β(α+ 1) =
1

2
α
α+ 1

2
+ 2β

β + 1

2
− α

4
− (α− 2β)2

4
⇔

β(α+ 1) +
α

4
+

(α− 2β)2

4
=

1

4
α(α+ 1) + β(β + 1) ⇔

4β(α+ 1) + α+ (α− 2β)2 = α(α+ 1) + 4β(β + 1) ⇔
(α− 2β)2 = (α− 2β)2

The following lemma provides a useful lower bound on the potential of any given
outcome of a linear congestion game.

LEMMA A.2. For nonnegative integers xe, x
∗
e ≥ 0:

1

2

∑
e

(
3

4
ae +

be
2
)xe −

1

8

∑
e

ae(xe − 2x∗
e)

2 ≤ 1

4

(∑
e

ae
xe(xe + 1)

2
+
∑
e

bexe

)
PROOF.
1

2

∑
e

(
3

4
ae +

be
2
)xe −

1

8

∑
e

ae(xe − 2x∗
e)

2 ≤ 1

4

(∑
e

ae
xe(xe + 1)

2
+
∑
e

bexe

)
⇔

1

2

∑
e

3

4
aexe −

1

8

∑
e

ae(xe − 2x∗
e)

2 ≤ 1

4

∑
e

ae
xe(xe + 1)

2
⇔

3
∑
e

aexe ≤
∑
e

aexe(xe + 1) +
∑
e

ae(xe − 2x∗
e)

2

However, for all nonnegative integers xe ̸= 1, 3xe ≤ xe(xe+1), hence over those edges
e the inequalities trivially hold. Even if xe = 1, we have that 3xe ≤ xe(xe + 1) + (xe −
2x∗

e)
2, since this translates now to (1− 2x∗

e)
2 ≥ 1, which is true for all integers x∗

e.

Next, we combine the lemmas of this section to prove an upper bound of 2 for the ra-
tio between value of the potential function Φ(s) =

∑
e

∑ℓe(s)
k=1 ce(k) =

∑
e

∑ℓe(s)
k=1

(
aeℓ(s)+

be
)

at the worst Nash equilibrium and its optimum value9.

THEOREM A.3. The value of the potential function Φ(s) =
∑

e

∑ℓe(s)
k=1 ce(k) =∑

e

∑ℓe(s)
k=1

(
aeℓ(s)+be

)
of any linear congestion game at any Nash equilibrium is within

a factor of two of its optimal value.

PROOF. Suppose that s1, s2, . . . , sn is a Nash equilibrium of a linear congestion game
and s∗1, s

∗
2, . . . , s

∗
n corresponds to the global optimum of the potential function, then we

have that:

9The optimal value is also achieved at a Nash equilibrium, since it is the global minimizer of the potential.
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Φ(s1, s2, . . . , sn) =
∑
e

xe∑
i=1

(aei+ be)

=
∑
e

ae
xe(xe + 1)

2
+
∑
e

bexe

=
1

2

∑
e

(aexe + be)xe +
1

2

∑
e

(ae + be)xe

=
1

2

∑
i

Ci(s1, s2, . . . , sn) +
1

2

∑
e

(ae + be)xe

≤ 1

2

∑
i

Ci(s∗i , s−i) +
1

2

∑
e

(ae + be)xe

≤ 1

2

∑
e

(ae(xe + 1) + be)x
∗
e +

1

2

∑
e

(ae + be)xe

=
1

2

∑
e

aex
∗
e(xe + 1) +

1

2

∑
e

bex
∗
e +

1

2

∑
e

(ae + be)xe

=
1

2

(
1

2

∑
e

ae
xe(xe + 1)

2
+ 2

∑
e

ae
x∗
e(x

∗
e + 1)

2
− 1

4

∑
e

aexe −
1

4

∑
e

ae(xe − 2x∗
e)

2

)
+

+
1

2

∑
e

bex
∗
e +

1

2

∑
e

(ae + be)xe

=
1

4

∑
e
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xe(xe + 1)

2
+
∑
e
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x∗
e(x

∗
e + 1)

2
+

1

2

∑
e

bex
∗
e −

1

8

∑
e

ae(xe − 2x∗
e)

2 +

+
1

2

∑
e

(
3

4
ae + be)xe

=
1

4

∑
e

(
ae

xe(xe + 1)

2
+ bexe

)
+
∑
e

(
ae

x∗
e(x

∗
e + 1)

2
+

1

2
bex

∗
e

)
− 1

8

∑
e

ae(xe − 2x∗
e)

2 +

+
1

2

∑
e

(
3

4
ae +

be
2
)xe

≤ 1

4
Φ(s1, s2, . . . , sn) + Φ(s∗1, s

∗
2, . . . , s

∗
n)−

1

8

∑
e

ae(xe − 2x∗
e)

2 +
1

2

∑
e

(
3

4
ae +

be
2
)xe

By applying Lemma A.2, we have that:

Φ(s1, s2, . . . , sn) ≤ 1/2Φ(s1, s2, . . . , sn) + Φ(s∗1, s
∗
2, . . . , s

∗
n)

The statement about pure Nash equilibria follows immediately.

Next, we show that this bound is indeed the best possible.

THEOREM A.4. There exist linear congestion games such that the maximum ratio
of the value of the potential function Φ(s) =

∑
e

∑ℓe(s)
k=1 ce(k) =

∑
e

∑ℓe(s)
k=1

(
aeℓ(s) + be

)
at any Nash equilibrium and its optimum value is equal to 2. Furthermore, for any
ϵ > 0, there exist linear symmetric congestion games such that the corresponding ratio
is greater that 2− ϵ.
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PROOF. We will construct a congestion game for N ≥ 3 players and |E| = 2N fa-
cilities where the ratio between worst potential at equilibrium and its optimal value
is equal to 2. All facilities e have latency function ce(x) = x. We divide the set E into
two subsets E1 = {h1, . . . , hN} and E2 = {g1, . . . , gN}, each of N facilities. Player i has
two pure strategies: {hi, gi} and {hi+1, gi−1, gi+1}. The optimal Nash is for each player
to select the first strategy while the worst-case Nash equilibrium is for each player to
select the second strategy. It is not hard to verify that at the worst Nash equilibrium
the potential is equal to 4N . At the optimal Nash the potential is equal to 2N . Hence,
their respective ratio is equal to 2 matching the upper bound for the class of linear
congestion games.

For any ϵ > 0 we can even construct symmetric linear congestion games for which
this ratio is greater than 2 − ϵ. We construct such games as follows: We partition the
facilities into sets {P1, P2, . . . , Pn} of the same cardinality and make each Pi a pure
strategy. Each Pi contains Nα1+

(
N
2

)
α2 facilities where α1, α2 are appropriate constants

to be determined later. We furthermore partition each of the Nα1 facilities of set Pi into
N groups {RPi

1 , . . . , RPi

N }, each of size α1. Similarly, we partition the
(
N
2

)
α2 facilities of

set Pi into
(
N
2

)
groups Q {QPi

12, . . . , Q
Pi
ij , . . . , Q

Pi

N−1N} each of size α2.
The available strategies to each player i will include, besides all the Pi strategies,

strategies (A1, . . . , An) of the following form: Each strategy Ai contains out of each Pj ,
all the facilities in R

Pj

i as well as all facilities in each of the Q
Pj

kl where either k = i or
l = i. As a result, each strategy Ai includes Nα1 +N(N − 1)α2 elements.

The strategy profile (P1, P2, . . . , Pn) is trivially a Nash equilibrium of the game, since
each Pi is an action with a minimal number of facilities (amongst all available actions)
and the load of each facility is optimal (i.e. equal to 1).

We will choose α1, α2, so that the strategy profile (A1, A2, . . . , An) is also a Nash
equilibrium. Now, the cost for each player i is ci(A) = N(α1 + 2(N − 1)α2). It suffices
to select α1, α2 so that player i will not switch to Pj . (It is straightforward that player
i will not switch to the Nash strategy of some other player k.) The cost after switching
has as follows:

ci(A−i, Pj) = α1+2(N−1)α2+2(N−1)α1+3

(
N − 1

2

)
a2 = (2N−1)α1+(N−1)

3N − 2

2
α2

We want ci(A) = ci(A−i, Pj), or equivalently α1 = N+2
2 α2, which is satisfied when

we select α1 = N + 2 and α2 = 2. With this, the potential at the (A1, A2, . . . , An) Nash
equilibrium is N(Nα1+3×N(N−1)

2 α2) = N2(4N−1). The potential at the (P1, P2, . . . , Pn)

Nash, is equal to the social welfare, equal to N2(2N+1). As N goes to infinity this ratio
goes to 2.

Putting all of these arguments together we derive that:

THEOREM A.5. Given any linear congestion game with arbitrary topology, and any
set of fully randomized scheduling policies, (even adversarial, correlated), then under
robust optimization the price of anarchy is at most 2 and this bound is tight.

B. PRICE OF ANARCHY ANALYSIS UNDER WIN-OR-GO-HOME PRINCIPLE
PROPOSITION B.1. Under uniformly randomizing schedulers, for any M ≥ 0, there

exist linear congestion games such that under the Win-or-Go-Home principle its price of
anarchy is greater than M .

PROOF. Let’s assume a load balancing game with N agents and N resources
{1, 2, . . . , N} with cost functions c1(x) = x and ci(x) = x + 1 for i ≥ 2. The strategy
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outcome where all agents choose the first resource is a Nash equilibrium. Indeed, the
probability of any agent of having the minimal cost amongst all agents is 1/n. If an
agent deviates then his cost would be equal to 2 with probability 1, however there
will always be someone outperforming him for any possible ordering of the rest of the
agents on the first resource. Hence, the probability of “winning” drops to zero when
deviating to another strategy. Finally, the social cost of this strategy is N(N + 1)/2,
whereas the optimal is 2N − 1. The price of anarchy for the resulting class of games is
unbounded and the theorem follows.

C. PRICE OF ANARCHY ANALYSIS UNDER SAVAGE’S MINIMAX REGRET PRINCIPLE
In this section we will present some preliminary results about price of anarchy in
linear symmetric load balancing games under Savage’s minimax regret principle.
Load balancing games define a special class of congestion games where all strate-
gies are singletons (i.e. paths of length 1). Finally, symmetric congestion games have
the property that all agents share the same strategy set. Savage’s minimax regret
principle essentially applies Wald’s minimax model to the regrets associated with
each agent’s decision. The special structure of symmetric load balancing games al-
lows for a more concrete representation of each agent’s estimated cost under Savage’s
principle. Specifically, the term mins∈S maxω∈Ω

(
c(s, ω) − mins ′∈S c(s ′, ω)

)
reduces to

ce(ℓe(s))−mine′ ̸=e ce′(1).

LEMMA C.1. In a load balancing game under independent, uniformly randomizing
agents, the experienced costs for each agent i for using strategy si = e given the strategies
s−i of the other agents is equal to Ci(s) = ce(ℓe(s))−mine′ ̸=e ce′(1).

PROOF. Given any outcome s = (e, s−i), since the schedulers are randomizing in-
dependently the worst case experienced cost for agent i on recourse e is when he is
assigned last on that element. Naturally, his latency in that case would be equal to
ce(ℓe(s)). On the other hand, since the schedulers are independent his regret is maxi-
mized when the agent would deviate to element e′ with the minimal ce′(1) amongst the
remaining elements and his was assigned first in the uniformly independent ordering
on that machine.

The above lemma immediately establishes that all such resulting games are still
congestion games and therefore pure Nash equilibria always exist. It is easy to check
that if there exist at least two machines with the same minimal latency under load of
one job, then, for all agents i and outcomes s, we have Ci(e, s−i) = ce(le(s))−mine ce(1).
However, this game is payoff equivalent to the game arising under Wald’s minimax
principle resulting in a price of anarchy of 2. We will show that even when this hypoth-
esis does not hold the price of anarchy is still bounded (at most equal to 3).

In the general case, let e0 be the machine with the minimal latency under load of
1 and let e1 be the machine that minimizes this latency amongst the rest. Let ∆ =
ce1(1)− ce0(1) ≥ 0 be the difference between the latencies of these two machines under
load of one. The resulting game as described in Lemma C.1 is equivalent to one with
latency functions ce0(x) = ce0(x) and ce(x) = ce(x) + ∆ for all e′ ̸= e.

THEOREM C.2. The price of anarchy for any symmetric linear load balancing game
under independent uniformly randomizing schedulers and agents applying Savage’s
minimax principle is at most 3.

PROOF. Given any strategy profile s, we will denote by C(s) the social cost under the
resulting cost functions under Savage’s minimax interpretation of uncertainty. On the
other hand, we will denote by Social Cost(s) =

∑
e

∑xe

i=1(aei+ be) the true social cost as
is recorded by the social designer. When identifying (Nash) equilibria for this game we
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will be utilizing the formulation of the game given by latency functions ce0(x) = ce0(x)
and ce(x) = ce(x) + ∆ for all e′ ̸= e. That is, for every agent i, Ci(e0, s−i) = ce0(ℓe0(s))
and for each machine e other than e0, Ci(e, s−i) = ce(ℓe(s)) + ∆.

Suppose that s1, s2, . . . , sn is a Nash equilibrium of a symmetric linear load balancing
game and s∗1, s

∗
2, . . . , s

∗
n corresponds to the social optimum, then we have that:

Social Cost(s1, s2, . . . , sn) =
∑
e

xe∑
i=1

(aei+ be)

=
∑
e

ae
xe(xe + 1)

2
+
∑
e

bexe

=
1

2

∑
e

(aexe + be)xe +
1

2

∑
e

(ae + be)xe
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2
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1

2

∑
e

(ae + be)xe
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2
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1

2

∑
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(ae + be)xe
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2
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∗
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1

2

∑
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2

∑
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2
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1

2

∑
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2

∑
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∗
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1

2
Social Cost(s∗1, . . . , s

∗
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1

2

∑
e

(ae + be)xe

=
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2
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e

aex
∗
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1

2
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bex
∗
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2

∑
e

(ae + be)xe +
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Above, line 2 is derived by applying lemma A.1. By applying Lemma A.2, we have
that:

Social Cost(s1, s2, . . . , sn) ≤
1

2
Social Cost(s1, s2, . . . , sn) +

3

2
Social Cost(s∗1, s

∗
2, . . . , s

∗
n)

The truth of the theorem follows immediately.

Next, we prove some lower bounds on the price of anarchy. We will show that even in
this restricted case of symmetric linear load balancing game under uniform indepen-
dently randomizing schedulers the price of anarchy is at least 4/3 whereas if we extend
our inquiries into linear congestion games then the price of anarchy can be greater or
equal to 5/3.

THEOREM C.3. The price of anarchy of symmetric linear load balancing games un-
der independent uniformly randomizing schedulers and agents applying Savage’s min-
imax principle is at least 4/3. Furthermore, there exist linear (non load-balancing) con-
gestion games with a price of anarchy of 5/3.

PROOF. Consider a load balancing game with 2M − 1 agents with two machines,
the first with a linear latency function of c1(x) = x and the second with constant
cost function c2(x) = M . We will argue that under Savage’s minimax principle, the
outcome where all agents are assigned to the first machine is a Nash equilibrium.
Indeed, the maximum possible regret for any agent in that configuration is (2M − 1)−
M = M − 1. On the other hand, if an agent was to deviate to the second machine then
his maximum possible regret would be equal to M − 1 corresponding to the scenario
where the scheduler of the first machine would order him first. Hence, this is a Nash
equilibrium with social cost of M(2M − 1). On the other hand, the social cost of the
outcome assigning exactly M agents to the first machine is equal to M(M + 1)/2 +
M(M − 1). The ratio of these costs converges to 4/3 as M grows to infinity.

The construction is the same as in Theorem 5.4. We construct a congestion game
with N ≥ 3 players and |E| = 2N facilities. We divide the set E into two subsets
E1 = {h1, . . . , hN} and E2 = {g1, . . . , gN}, each of N facilities. Player i has two pure
strategies: {hi, gi} and {hi+1, gi−1, gi+1}. The latency functions of the elements in E1 are
c(x) = 2x, whereas the latency functions of the elements in E2 are c(x) = x. The optimal
outcome corresponds to the state where each player selects the first strategy while the
worst-case Nash equilibrium is for each player to select the second strategy. The second
outcome is a Nash, since the worst case regret for each agent in this configuration is
6− 2 = 4, whereas if he were to deviate, the worst case regret would now be 7− 3 = 4.
At the worst Nash equilibrium the actual social cost is equal to 5N . At the optimal
state the actual social cost is equal to 3N , which results to a ratio of 5/3.

Putting everything together we derive the following statement.

COROLLARY C.4. The price of anarchy for any symmetric linear load balancing
game under independent uniformly randomizing schedulers and agents applying Sav-
age’s minimax principle is at most 3. There exist symmetric linear load balancing games
with a price of anarchy of 4/3. Furthermore, there exist linear (non load-balancing) con-
gestion games with a price of anarchy of 5/3.
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