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Abstract We analyze the performance of protocols for

load balancing in distributed systems based on no-regret

algorithms from online learning theory. These protocols

treat load balancing as a repeated game and apply al-

gorithms whose average performance over time is guar-

anteed to match or exceed the average performance of

the best strategy in hindsight.

Our approach captures two major aspects of dis-

tributed systems. First, in our setting of atomic load

balancing, every single process can have a significant

impact on the performance and behavior of the system.

Furthermore, although in distributed systems partici-

pants can query the current state of the system they

cannot reliably predict the effect of their actions on

it. We address this issue by considering load balanc-

ing games in the bulletin board model, where play-
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ers can find out the delay on all machines, but do not

have information on what their experienced delay would

have been if they had selected another machine. We

show that under these more realistic assumptions, if all

players use the well-known multiplicative weights al-

gorithm, then the quality of the resulting solution is

exponentially better than the worst correlated equilib-

rium, and almost as good as that of the worst Nash.

These tighter bounds are derived from analyzing the

dynamics of a multi-agent learning system.

Keywords Learning Theory · Game Theory · Price

of Anarchy

1 Introduction

Game theory provides a framework that helps us un-

derstand environments where participants interact by

selfishly making decisions, and achieve a global out-

come without explicit coordination by a single global

designer. Modeling various problems from routing, net-

work design, and scheduling as games played by selfish

agents has led to many interesting results. Much of this

literature uses Nash equilibrium as the solution con-

cept, i.e., defines Nash equilibrium as the outcome in a

competitive game. However, Nash equilibrium has sev-

eral drawbacks that call into question its plausibility

as a prediction of a game’s outcome. First, the solu-

tion concept tells us nothing about the dynamics by

which players can be expected to reach an equilibrium.

In most games, natural “game play” tends not to con-

verge to Nash equilibria. In fact, the problem of com-

puting Nash equilibria in many games turns out to be

computationally hard — it was recently shown to be

PPAD-complete [9,7]. If computing equilibria is compu-

tationally hard, it seems unreasonable to assume that
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players will find such a solution. Further, most games

have many equilibria, hence finding one would also in-

volve coordination among the players to agree on one

of the possible outcomes.

To overcome these drawbacks, researchers have con-

sidered alternative solution concepts based on the long-

run average outcome of self-adapting agents who react

to each other’s strategies in repeated play of the game.

Adopting a paradigm known as “sophisticated learn-

ing” in the economics literature [17], we assume in this

paper that all players use no-regret strategies. No-regret

algorithms have the property that in any repeated game

play, their average loss per time step approaches that

of the single best strategy with hindsight (or better)

over time. Regret minimization can be done via simple

and efficient strategies, and yet the no-regret property

is analogous to the notion of equilibrium (e.g., see the

survey of Blum and Mansour [5]). Outcome distribu-

tions reached by such no-regret strategies have been

well studied, see [6,17,29]. If all players play strategies

using no-regret algorithms, it results in an empirical dis-

tribution of play converging to a weaker set of equilib-

ria: the coarse (weak) correlated equilibria[29,26]. Fos-

ter and Vohra [13] introduced the stronger notion of

internal regret, such that no-internal-regret algorithms

converge to the set of correlated equilibria.

Our interest in this paper is the quality of outcomes

when players play simple regret-minimizing strategies

without access to full information about the game. Much

of the work in algorithmic game theory concerns the

price of anarchy, defined as the ratio of the worst Nash

equilibrium to the best outcome, with respect to some

global quality measure of the solutions. Blum et al. in

[3] were the first to consider the quality of outcome

reached when players using no-regret learning strate-

gies. They consider congestion games in the Wardrop

(nonatomic) setting of infinitesimal agents, and hence

the action of a single player doesn’t have significant

impact on the system. In this setting they extend the

price of anarchy results known for Nash equilibria, to

outcomes reached by no-regret learning. Furthermore,

Blum at al. [4] defined the price of total anarchy as

the ratio of the worst outcome that can be reached by

regret minimizing players1 to the best outcome. Blum

et al. [3,4] show that in some classes of games regret-

minimizing players exhibit behavior or global quality

that is close to that of a Nash equilibrium. More re-

cently, Roughgarden [27] showed that for a wide class

of games (including congestion games that satisfy a nat-

ural smoothness condition) bounds on the price of anar-

chy automatically extend to the total price of anarchy,

when the global quality is defined to be the average cost.

1 which is equivalent to the worst correlated equilibrium

Unfortunately, in many other classes of games and un-

der natural global quality measures, the price of total

anarchy can be significantly worse than the price of an-

archy, which suggests that generic no-regret learning is

not effective for these games. In fact, the simplest such

game is a load balancing game in which there are n jobs

and n machines. Each job selects a machine on which

to run, and evaluates the outcome as the load of its ma-

chine, i.e. the number of jobs on the machine it selected.

For this class of games the quality of the worst corre-

lated equilibrium is Θ(
√
n) [4], whereas a sequence of

papers [22,8,23] shows that the worst Nash equilibrium

is the symmetric fully mixed equilibrium, which has ex-

ponentially better quality, namely Θ(log n/ log log n).

In distributed systems we need to consider a further

source of difficulty. Traditional learning theory assumes

that after playing a round of a game, each player can

discover the cost of each possible strategy they could

have used given the actions of their opponents. This is

a reasonable assumption in games with infinitesimally

small players, when actions of a single player have (es-

sentially) no effect on the system. It is also reasonable

when the underlying game is well-defined and common

knowledge amongst all players. In distributed systems,

however, this assumption is rather unnatural. Indeed,

different subsystems only need to share some common

functionality, whereas their inner workings can vary

widely and even be updated seamlessly, and every sin-

gle process can have significant impact on the behavior

of the system.

Despite the pessimistic theoretical predictions men-

tioned above and the even more demanding setting of

applied systems, simple and intuitive adaptive proce-

dures seem to work reasonably well in practice. In this

work and in a related paper [20], we analyze models

of such network dynamics: we explore the quality of

outcomes reached by some concrete learning strategies.

We focus on the multiplicative weights learning algo-

rithm (also known as Hedge [16]), which is arguably

the simplest and most intuitive no-regret algorithm.

In [20] we study the dynamics of these algorithms in

atomic congestion games in the traditional full infor-

mation setting. We show that in almost all such games,

the multiplicative-weights learning algorithm results in

convergence to pure equilibria. In the game of [20], each

process consumes non-negligible system resources and

as a result can have a significant impact on the perfor-

mance and behavior of the whole system. Moving away

from the assumption of infinitesimally small users as

in [3,11] adds a significant layer of complexity to the

analysis of the system. How much closer can we get to

realistic models of applied systems before we become
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overwhelmed by the complexity of the emerging dynam-

ics [28]?

In this paper, we take a significant additional step

towards modeling distributed systems, by moving away

from the standard full information setting. We consider

load balancing in the so-called “bulletin board model”

(similar to the ones in [2,25]). In this model players can

find out the delay on all machines, but do not have in-

formation on what their experienced delay would have

been if they had selected another machine. Namely,

players can query the current state of the system but

cannot reliably predict the effect of their actions on it.

Although this change in the players’ information

might appear benign at first glance, it significantly al-

ters the system behavior. Most importantly, the sys-

tem becomes symmetric because all players observe the

same feedback signal and respond to it using identi-

cal algorithms. Thus, at any point in time the play-

ers will sample their strategies from identical distri-

butions, and our analysis only needs to focus on how

this distribution evolves over time. This is quite dif-

ferent from our analysis of the full information setting

in [20], which focused on the symmetry-breaking that

inevitably occurs when atomic players use the Hedge

algorithm in that setting. The symmetric setting that

we study here allows for a significantly simpler analy-

sis, incorporating techniques that are standard in the

analysis of multiplicative-weight algorithms in learning

theory (such as the use of KL-divergence as a potential

function) as well as some new techniques specific to our

setting (such as the martingale argument used to an-

alyze the random walk in Lemma 3). Another benefit

of this analysis, in addition to its simplicity, is the con-

siderably better dependence of the convergence time on

the number of players and congestible resources.

We focus on load balancing games of n players (of

equal weights 1/n) and n machines (edges). The equiv-

alence between number of players and numbers of ma-

chines is not critical for our results. However, we choose

them because the performance gap between worst case

correlated and worst case Nash equilibria is especially

punctuated under such assumptions (e.g. when all ma-

chines exhibit identity cost functions ce(x) = x). Fur-

thermore, we allow any cost functions ce(x) which are

twice continuously differentiable with bounded deriva-

tives.

Our Results and Techniques We show that a natural

and simple multiplicative-weights algorithm achieves ex-

ponential improvement over the worst correlated equi-

librium, for our class of load-balancing games. Our main

result is that using the Hedge algorithm [16] in the

bulletin board model, the expected makespan of the

outcome is bounded by O(log n), exponentially better

than the known lower bounds for generic no-regret al-

gorithms. We also show that Hedge continues to satisfy

the no-regret property even in the bulletin board model.

We utilize KL-divergence to express the distance be-

tween the mixed strategy employed by a player at time t

and her projected strategy at the symmetric Nash equi-

librium of the non-atomic version of the game. We show

that when this distance is large enough, then it has a

tendency to shrink. As a result we can predict the evo-

lution of the system by analyzing a random walk, that

has negative drift only when we are far away from the

origin, an analysis that is of independent interest.

Prior work The theory of learning in games has a long

history; see [17] for an extensive exposition of the litera-

ture in this field, which has primarily focused on analyz-

ing the convergence behavior of various classes of learn-

ing processes and relating this behavior to Nash equi-

librium, correlated equilibrium, and their refinements.

See [5] for a more recent survey. The relationship be-

tween regret minimization, calibrated forecasting, and

correlated equilibrium has been studied by [14,13], and

the connection between these topics and the price of an-

archy was first made in [3,4]. Whereas these papers use

regret bounds to establish static equilibrium properties

of the limiting distribution of play, our work requires di-

rectly analyzing the dynamics of the stochastic process

induced by these algorithms.

There has been considerable research in algorithmic

game theory on understanding the behavior of adap-

tive procedures in load-balancing games and other con-

gestion games, including best-response dynamics [18],

replication protocols [10] and sampling procedures [15].

These simple distributed protocols are well motivated,

but they lack desirable learning-theoretic properties such

as the no-regret property. An exception is [11], which

analyzes a continuous-time process in non-atomic con-

gestion games that can be regarded as the continuum

limit of the multiplicative-weights learning process stud-

ied here. The shift from atomic to non-atomic con-

gestion games eliminates the distinction between the

solution quality of correlated, mixed Nash, and pure

Nash equilibria, thus eliminating the motivating ques-

tion in our work while also evading most of the tech-

nical difficulties we address in analyzing the discrete-

time process in atomic congestion games. In the con-

text of atomic congestion games, Roughgarden [27] has

recently shown that for a wide class of games, includ-

ing congestion games that satisfy a natural smoothness

condition, bounds on the price of anarchy automatically

extend to the total price of anarchy, when the global

quality is defined to be the average cost.
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In [20] we introduced the study of the multiplica-

tive weights learning algorithm in atomic congestion

games. Our setting was the standard full information

one, where all players have access to an accurate model

of the underlying game. We show that in almost all

such games, the multiplicative-weights learning algo-

rithm results in convergence to pure equilibria. As dis-

cussed earlier, shifting from the full information setting

to the more realistic bulletin board model invalidates

the results of [20]; in particular this shift falsifies the

prediction of convergence to pure equilibria and neces-

sitates an analysis of the dynamics using completely

different tools.

2 Preliminaries

A strategic game is a triple (N ; (Si)i∈N ; (ui)i∈N ) where

N is the set of players and for every player i ∈ N , Si is

the set of (pure) strategies (or actions) of player i, and

the utility function ui is a real valued function defined

on S = ×i∈NSi . For every strategy profile s ∈ S,

ui(s) represents the payoff (positive utility) to player i.

For any strategy profile s ∈ S and any strategy s′i of

player i we use (s−i, s
′
i) to denote the strategy profile

that we derive by substituting the i-th coordinate of the

strategy profile s with s′i. A strategy profile s is a Nash

equilibrium if ui(s) ≥ ui(s−i, s′i) for every s′i and every

i ∈ N . Analogously, a Nash ε-equilibrium is defined as

a strategy profile s such that ui(s) ≥ ui(s−i, s′i)− ε for

every s′i, and every i ∈ N . These notions are extended

to randomized or mixed strategies by using the expected

payoff.

External regret of an online algorithm (sometimes

referred to as merely regret) is defined as the maxi-

mum over all input instances of the expected difference

in payoff between the algorithm’s actions and the best

action. If this difference grows sublinearly with time,

then the algorithm is said to exhibit no external re-

gret, or simply no regret. Similarly, an algorithm is said

to exhibit ε-regret, if its average performance may be

at most ε worse than that of the best fixed action in

hindsight, as time goes to infinity. Such learning algo-

rithms can still in practice offer no-regret guarantees

by iteratively reducing their ε performance gap to zero.

No-regret algorithms are closely related to a notion of

correlated equilibrium. We say that a probability distri-

bution π over the strategy profiles S is a coarse (weak)

correlated equilibrium[29] if for all players i and strate-

gies s′i ∈ Si, the expected payoff of player i playing

s′i is no better than the expected payoff from the dis-

tribution, i.e.,
∑
s∈S ui(s)π(s) ≥

∑
s∈S ui(s−i, s

′
i)π(s).

Note that a mixed Nash equilibrium is a coarse corre-

lated equilibrium where the probability distribution π

is a product distribution over the strategy sets Si (i.e.,

it is not correlated). It is well known that the long-run

average outcome of repeated play using no-external re-

gret algorithm converges to the set of coarse correlated

equilibria.

3 System Analysis

In this section we study the performance of learning al-

gorithms in load-balancing games, i.e. congestion games

on parallel links using the “bulletin board model” in

which players assess edge costs according to the actual

cost incurred on that edge, and not the hypothetical

cost if the player had used it. We demonstrate that us-

ing the Hedge algorithm in the “bulletin board model”

the process remains close to the symmetric fully mixed

equilibrium of the non-atomic version of the game. As

a result, its performance is exponentially better than

the worst correlated equilibrium of the game.

In this section we first present the definition of the

games we will be focusing on (section 3.1). Next, we

introduce the multiplicative updates algorithm and the

bulletin board model in section 3.2, where we prove that

the no-regret property persists in the bulletin board

model. The main part of the analysis is in section 3.3,

while we defer a few technical lemmas to section 3.4.

3.1 Defining the game and the social cost

The congestion game we consider in this section is an

atomic congestion game with a set of n players, each

having weight wi = 1/n, and n edges with cost func-

tions ce(x). In each period t = 1, 2, . . ., each player

chooses one edge e. We define ft(e) to be the total

amount of flow on edge e in period t, i.e. ft(e) = j/n

where j is the number of players choosing e in period t.

We make the following standing assumptions: for the

edge e, the function ce(x) is twice continuously dif-

ferentiable, satisfies ce(0) = 0 and ce(1) ≤ 1, and for

some positive constants A,B it satisfies c′e(x) ≥ A and

0 ≤ c′′e (x) ≤ B for all x ∈ [0, 1]. In section 3.4, lemma

4 proves that these hypotheses imply the following in-

equalities for all x ∈ [0, 1]:

Ax ≤ ce(x) ≤ (B + 1)x (1)

As a measure of social cost, we adopt the maximum

edge cost, maxe ce[fe(t)]. Interpreting players as jobs

and edges as machines, this interpretation of the so-

cial cost is equivalent to the makespan. The inequality

Ax ≤ ce(x) ≤ (B + 1)x implies that for any flow vec-

tor f the social cost maxe ce(fe) lies between A‖f‖∞
and (B + 1)‖f‖∞. In particular, the social optimum



Load Balancing Without Regret in the Bulletin Board Model 5

is Θ(1/n). As we have mentioned in the introduction,

even for the extremely simple case in which ce(x) = x

for all e, x — i.e., a load-balancing game in which play-

ers schedule n jobs on n machines, and the cost experi-

enced by player i is proportional to the number of jobs

on its machine — the correlated equilibria of the game

can be exponentially worse than any Nash equilibrium.

3.2 The learning algorithm and the bulletin board

model

To define the learning algorithm used by each player, we

let ε be a small positive number (we’ll need to have ε ≤
1/n3 for the analysis) and we introduce the following

notations.

ce[t] = ce(ft(e)), ce[1 : t] =

t∑
r=1

ce[r]

Z(t) =
∑
e∈E

exp(−εce[1 : t− 1]).

In period t, each player samples a random edge e with

probability

P (e, t) =
exp(−εce[1 : t− 1])

Z(t)
, (2)

i.e., to obtain P (e, t) from P (e, t − 1) we multiply it

by exp(−εce[t − 1]) and then renormalize all probabil-

ities so that they sum to 1. At the first time step, the

algorithm samples an edge uniformly at random. This

algorithm for specifying a mixed strategy in period t

is a version of the Hedge algorithm [16], modified so

that players assess edge costs according to the actual

cost ce[t− 1] incurred on that edge, and not the hypo-

thetical cost ce(ft−1(e) + 1
n ) if the player had used it

for players that do not use the edge in this iteration.

This model is usually referred to as the bulletin board

model. Using the well-known fact that Hedge itself is

a no-regret learning algorithm2 first we prove that the

bulletin board variant of Hedge is also a no-regret learn-

ing algorithm.

Proposition 1 The bulletin board variant of Hedge in

any load-balancing game with non-decreasing cost func-

tions retains the ε-regret property.

Proof Hedge is known to have the ε-regret property

even in settings when the cost functions of the edges

can vary with time[16]. For the proof, let us consider

such a setting, where the actual cost/latency of each

edge at period t is cte(x
t
e), where xte is the load of the

2 provided that ε converges to zero at an appropriate rate
depending on t, e.g. ε(t) = O(1/n3

√
t)

edge in question at period t. Naturally, all cost func-

tions cte are non-decreasing functions of xe. Now, we

will define a new cost function Cte as follows:

Cte(x) =

{
cte(x) if x ≤ xte
cte(x

t
e) otherwise.

Let us examine what this new cost function expresses.

Under these cost functions, the latency of any edge ob-

served at time t is actually the worst possible and any

further increase on the load of any edge would have no

effect on its latency. If this optimistic view of the cost

of the edges were actually true, then the algorithm we

have proposed would perform exactly as the Hedge al-

gorithm. Hedge is known to have the no-regret property,

hence, the expected performance of the algorithm as t

goes to infinity is roughly as good as that of the best

edge/strategy in hindsight under this modified costs C.

However, the actual cost of any strategy under the real

cost functions c, when taking into account the effect of

the deviating player, would be at least as bad as that

under the optimistic costs C. As a result the perfor-

mance of our algorithm is also of ε-regret in regards to

the best strategy in hindsight under the true cost eval-

uations. ut

Although the proposition above in its current form

will suffice for our purposes, it can be straightforwardly

extended to any no-regret algorithm and all congestion

games with non-decreasing cost functions.

3.3 Main theorems

The main result of this section is the following bound
on the distribution P (t) determined by the Hedge algo-

rithm (2).

Theorem 1 If all players sample their strategies at

time t using the distribution P (t) determined by the

Hedge algorithm (2), then there exist positive constants

α, β0 such that for all times t and all β > β0 it holds

with probability at least 1−exp(−αβ) that maxe |P (e, t)| <
2β/n.

Combining this theorem with Chernoff bounds leads to

a price-of-anarchy type result — the long-run average

social cost exceeds the social optimum by a factor of at

most O(log n). More precisely:

Corollary 1 In the setting of Theorem 1, there exist

constants c1, c2 such that for all t, with probability at

least 1− 1/nc1 , the flow ft sampled by the players sat-

isfies

max
e
ce(ft(e)) ≤

c2 log n

n
.
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The proof of Theorem 1 rests on analyzing a stochas-

tic process KL(t) defined as the KL-divergence between

the Nash equilibrium and P (t). Let Q be the symmet-

ric Nash equilibrium of the non-atomic congestion game

(where all players play the same strategy) with edge set

E and cost functions (ce)e∈E . KL-divergence between

P and Q is defined as

KL(t) =
∑
j∈E

Q(j) log (Q(j)/P (j, t)) .

KL-divergence measures the distance3 between the dis-

tributions Q(j) and P (j, t). It is zero if they are equal

and positive otherwise. We will show that when this dis-

tance is large enough, then it has a tendency to shrink

(Lemma 2). This reduces the analysis of KL(t) to ex-

ploring the behavior of a kind of random walks, which

face negative drift only when they are far away from

the origin. Lemma 3 provides this analysis.

Theorem 1 will follow from proving an exponential

tail bound for KL(t).

Theorem 2 There exist positive constants α, β0 such

that Pr(KL(t) > β/n) < e−αβ for all β > β0.

We next sketch the proof of this tail bound. In all

of the following arguments, “log” denotes the natural

logarithm function. We’ll need the following technical

lemma.

Lemma 1

logZ(t+ 1)− logZ(t) ≤ (exp(−ε)− 1)
∑
e

P (e, t)ce[t].

Proof We will use the fact that if 0 ≤ y ≤ 1, then

exp(−εy) ≤ 1 + y(exp(−ε)− 1); this can be verified by

checking that the left side is a convex function, the right

side is a linear function, and the left and right sides are

equal when y is an endpoint of the interval [0, 1].

Z(t+ 1)

Z(t)
=

∑
e e
−εce[1:t−1]e−εce[t]

Z(t)

≤
∑
e e
−εce[1:t−1] [1 + ce[t](e

−ε − 1)]

Z(t)

= 1 +
(
e−ε − 1

)∑
e

P (e, t)ce[t].

The lemma follows by taking the logarithm of both sides

and using the identity log(1 + y) ≤ y. ut

We denote the difference KL(t+ 1)−KL(t) as ∆t.

3 although it is not a true distance metric since it is not
symmetric

Lemma 2 The stochastic process KL(t) satisfies

E[∆t |P (t)] ≤ −(ACε/n)KL(t) + Cε/n2. (3)

In particular, KL(t) drifts to the left at a rate of Ω(ε/n2)

whenever it is greater than 2/(An).

Proof A simple calculation using equation (2) using

Lemma 1 justifies the bound

log

(
P (e, t)

P (e, t+ 1)

)
≤ εce[t]−

(
1− e−ε

) ∑
e′∈E

P (e′, t)ce′ [t].

Taking a weighted average of the above inequalities,

weighted by Q(e), we obtain

∆t =
∑
e

Q(e)

(
log

P (e, t)

P (e, t+ 1)

)
≤ ε

∑
e

Q(e)ce[t]− (1− exp(−ε))
∑
e

P (e, t)ce[t].

Now, using c̄e[t] to denote E[ce[t] | P (t)] and using

ce[f̄(t)] to denote ce(P (e, t)), we may take the condi-

tional expectation of both sides and apply the identity

1− exp(−ε) > ε− 1
2ε

2 to obtain:

E [∆t | P (t)] ≤ ε
∑
e

[Q(e)− P (e, t)]c̄e[t] +
ε2

2

∑
e

P (e, t)c̄e[t]

≤ ε(Q− P (t)) · c[f̄(t)] + ε(Q− P (t)) · (c̄[t]− c[f̄(t)]) +
ε2

2
.

Next, we will denote the usual convex potential function∑
e

∫ xe
0
ce(y) dy as Φ(x). As a result, we have for the

first term above that

ε(Q−P (t))·∇Φ(P (t)) ≤ ε [Φ(Q)− Φ(P (t))] ≤ −Aε‖P (t)−Q‖22,

where the last inequality uses the fact the Q minimizes

Φ, combined with our assumption that c′e(y) ≥ A for

all y. It is not hard to prove that for some constant C,

the additional inequalities

‖P (t)−Q‖22 ≥
C

n
KL(t), (4)

ε(Q− P (t)) · (c̄[t]− c[f̄(t)]) +
1

2
ε2 ≤ Cε/n2 (5)

hold (Lemmas 7 and 8 in section 3.4), implying that

the stochastic process KL(t) satisfies

E[∆t |P (t)] ≤ −(ACε/n)KL(t) + Cε/n2, (6)

as claimed.

Next we give the submartingale argument to show that

the fact that KL(t) has negative drift when its large

implies that the probability of KL(t) > β/n is expo-

nentially small in β as claimed by Theorem 2.
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Lemma 3 Let (Yt)t≥0 be a random walk satisfying the

following for some constant M ≥ 1:

bounded differences: |Yt+1 − Yt| ≤ 1;

negative drift: E(Yt+1 − Yt |Yt) ≤ −1/M

whenever Yt ≥M.
Then there exist constants α, λ0 such that for all λ > λ0
and t ≥ 0, we have Pr(Yt > λM) < e−αλ.

Proof For t ∈ N, r ∈ R+, let E(r, t) denote the event

that Yt > M + r + 1. For 0 ≤ s ≤ t let E(r, t, s) denote

the event 4

E(r, t, s) = {Ys−1 ≤M} ∩ {Ys, Ys+1, . . . , Yt−1 > M}
∩ {Yt > M + r + 1}.

Note that the events E(r, t, s) (s = 0, 1, . . . , t) are dis-

joint and their union is E(r, t). For s ≥ t − r, we have

that Pr(E(r, t, s)) = 0. Our upper bound on Pr(E(r, t))

will be established by proving separate upper bounds

for the rest of the probabilities Pr(E(r, t, s)).

To this end, for a specified value of s, define a ran-

dom variable q = min{i ≥ s |Yi ≤M} and a stochastic

process

Zi =

{
MYi + i if s ≤ i ≤ q
MYq + q if i > q.

Our negative drift assumption for the stochastic pro-

cess (Yi)i≥0 implies that the process (Zi)i≥0 is a super-

martingale:

E [Zi |Zs, . . . , Zi−1] ≤ Zi−1.

Also, the bound |Zi+1−Zi| ≤M + 1 holds with proba-

bility 1. Applying Azuma’s supermartingale inequality,

for every γ > 0 we have

Pr (Zt − Zs > γ) < exp

(
− γ2

2(M + 1)2(t− s)

)
.

If event E(r, t, s) occurs, then we have

Zt = MYt + t > M(M + r + 1) + t

= M2 +Mr +M + t

Zs = MYs + s ≤M(Ys−1 + 1) + s

≤M2 +M + s

Zt − Zs > Mr + (t− s).

Therefore,

Pr(E(r, t, s)) < exp

(
− [Mr + (t− s)]2

2(M + 1)2(t− s)

)
.

4 For s = 0, E(r, t, 0) translates to {Y0, Y1, . . . , Yt−1 > M} ∩
{Yt > M + r + 1}

Summing over s, we obtain

Pr(E(r, t)) ≤
t∑

s=0

Pr(E(r, t, s))

<

t−brc−1∑
s=0

exp

(
− [Mr + (t− s)]2

2(M + 1)2(t− s)

)
.

Let k = br(M+1)/2c, and break up the sum into terms

in which t− s ≤ k and those in which t− s > k.

Pr(E(r, t)) <

k∑
u=brc+1

exp

(
− [Mr + u]2

2(M + 1)2u

)

+

∞∑
u=k+1

exp

(
− [Mr + u]2

2(M + 1)2u

)

<

k∑
u=0

exp

(
− M2r2

2(M + 1)2k

)

+

∞∑
u=k+1

exp

(
− u2

2(M + 1)2u

)

< (k + 1) exp

(
− r

2

8k

)
+

∫ ∞
k

exp

(
− x

2(M + 1)2

)
dx

≤ (k + 1) exp

(
− r2

4r(M + 1)

)
+ 2(M + 1)2 exp

(
−

1
2r(M + 1)− 1

2(M + 1)2

)
≤
[
1+

r(M + 1)

2
+2(M + 1)2e1/4

]
e−

r
4(M+1)

For r > e1/4 the last line implies that Pr(E(r, t)) <[
1 + 3r(M + 1)2

]
e−r/8M . By setting r = λM−M−1 >

e1/4 and c = 1
8 + 1

8M , we obtain

Pr(Yt > λM) <
[
1 + 3(λM −M − 1)(M + 1)2

]
e−

λ
8 +c,

which shows that the lemma holds whenever α < 1/8

and λ0 is a sufficiently large constant depending on α

and M .

Proof of Theorems 1 and 2:

Let Yt = KL(t)/ε. We can show that for all t ≥ 0,

|Yt+1 − Yt| ≤ 1. Indeed, since KL(t + 1) − KL(t) =∑
j∈E Q(j) log (P (j, t)/P (j, t+ 1)) and each of the terms

of the form P (j, t)/P (j, t+ 1) lies in the [e−ε, eε] inter-

val, Yt satisfies the property of bounded difference of

Lemma 3.

We apply Lemma 3 with M = (A+C)n2/AC. More-

over, the inequality E[∆t |P (t)] ≤ −(ACε/n)KL(t) +

Cε/n2 implies that there exist positive constants α, β0
such that Pr(KL(t) > β/n) < e−αβ for all β > β0.
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This proves Theorem 2. The bound on maxe |P (e, t)| in
Theorem 1 now follows by combining the KL-divergence

bound in Theorem 2 with Lemma 5 below, which bounds

the infinity-norms of two distributions P,Q in terms of

their corresponding KL-divergence. ut

3.4 Technical lemmas

The following technical lemmas complete the analysis

the performance of Hedge:

Lemma 4 Let ce(x) be a function in C2([0, 1]) satisfy-

ing

– ce(0) = 0, ce(1) ≤ 1;

– for all x ∈ [0, 1], c′e(x) ≥ A;

– for all x ∈ [0, 1], 0 ≤ c′′e (x) ≤ B.

Then Ax ≤ ce(x) ≤ (B + 1)x for all x ∈ [0, 1].

Proof For all x we have ce(x) =
∫ x
0
c′e(y) dy ≥

∫ x
0
Ady,

which establishes that Ax ≤ ce(x). To establish the up-

per bound on ce(x), we first use the mean value theorem

to deduce that there exists some x ∈ [0, 1] such that

c′e(x) =
ce(1)− ce(0)

1− 0
≤ 1.

If there exists y ∈ [0, 1] such that c′e(y) > B + 1, then

a second application of the mean value theorem would

imply the existence of z ∈ [0, 1] satisfying

|c′′e (z)| =
∣∣∣∣c′e(y)− c′e(x)

y − x

∣∣∣∣ > B,

contradicting our hypothesis about ce. Hence c′e(y) ≤
B + 1 for all y ∈ [0, 1]. Now, for all x ∈ [0, 1], ce(x) =∫ x
0
c′e(y) dy ≤

∫ x
0
B+1 dy, which establishes that ce(x) ≤

(B + 1)x. ut

Lemma 5 If P,Q are two probability distributions on a

finite set S, satisfying ‖P‖∞ ≥ 2‖Q‖∞, then KL(Q;P ) ≥
‖P‖∞
16 .

Proof Let s0 be a point at which P (s0) = ‖P‖∞. Let

a = Q(s0), b = P (s0). Then

KL(Q;P ) = Q(s0) log(
Q(s0)

P (s0)
) +

∑
s6=s0

Q(s) log(
Q(s)

P (s)
)

= a log(
a

b
) + (1− a)

∑
s 6=s0

Q(s)

1− a

[
− log

P (s)

Q(s)

]
Since

∑
s6=s0 Q(s)/(1 − a) = 1, the sum on the right

side can be interpreted as a weighted average of value of

the convex function − log(x) at the points P (s)/Q(s).

Using Jensen’s inequality, we see that this is greater

than or equal to − log(x) evaluated at the point

x =
∑
s6=s0

(
Q(s)

1− a

)
P (s)

Q(s)
=
∑
s6=s0

P (s)

1− a
=

1− b
1− a

.

Hence we have derived the first line of the following

series of bounds.

KL(Q;P ) ≥ a log
(a
b

)
+ (1− a) log

(
1− a
1− b

)
=

∫ b

a

x− a
x(1− x)

dx

The integrand is a strictly increasing function of x for

0 < x < 1, so letting c = (a+ b)/2 we have

∫ b

a

x− a
x(1− x)

dx ≥
∫ b

c

x− a
x(1− x)

dx

≥ (b− c) c− a
c(1− c)

=
1

4

(b− a)2

c(1− c)

≥ (b− a)2

4b
.

The assumption that ‖P‖∞ ≥ 2‖Q‖∞ implies a ≤ b/2,

and the lemma follows immediately. ut

Lemma 6 In a non-atomic load balancing game5 with

n edges whose cost functions satisfy the conditions of

Lemma 4, the Nash equilibrium Q satisfies for every

edge e:
A

(B + 1)n
≤ Q(e) ≤ B + 1

An

Proof Since Q is a Nash equilibrium, there exists6 a

z > 0 such that ce(Q(e)) = z for all e. Since there is

some e0 such that Q(e0) ≤ 1/n, we have z ≤ (B+1)/n.

Now for any edge e, the relations AQ(e) ≤ ce(Q(e))

and ce(Q(e)) = z ≤ (B + 1)/n together imply that

Q(e) ≤ (B + 1)/(An). Similarly, the existence of an

edge e1 such that Q(e1) ≥ 1/n implies that z ≥ A/n

from which it follows that Q(e) ≥ A/((B + 1)n) for all

e. ut

Lemma 7 For any distributions P,Q on an n-element

set S, if C/n ≤ Q(s) ≤ 1/2 for all s ∈ S, then

‖P −Q‖22 ≥
C

n
KL(Q;P ).

5 i.e. a non-atomic parallel-links congestion game
6 Since ce(0) = 0 for all e, in the symmetric Nash Q of the

non-atomic congestion game we have that Q(e), ce(Q(e) > 0
for all e. Otherwise, players could decrease their expected
latency by utilizing the empty resource.



Load Balancing Without Regret in the Bulletin Board Model 9

Proof Let x(s) = P (s)−Q(s). We have

KL(Q;P ) = −
∑
s

Q(s) log
P (s)

Q(s)

= −
∑
s

Q(s) log

(
1 +

x(s)

Q(s)

)
.

Using the identity log(1 + x) ≥ x − x2, valid for

−1/2 ≤ x ≤ 1, we obtain

KL(Q;P ) ≤ −
∑
s

Q(s)

[
x(s)

Q(s)
− x(s)2

Q(s)2

]
≤
∑
s

x(s)2

Q(s)
≤ n

C
‖x‖22,

from which the lemma follows immediately. ut

Lemma 8 Let P be any probability distribution on edges

and let f = (fe)e∈E be the random flow vector obtained

by letting n players each sample an edge in E according

to P and send 1/n units of flow on that edge. Let c̄, c

denote the vectors

c̄e = E(ce(fe)), ce = ce(E(fe)) = ce(P (e)),

respectively. There is a constant C such that

ε(Q− P ) · (c̄− c) +
1

2
ε2 ≤ Cε

n2
.

Proof Let us fix our attention on one edge e and let

x0 = P (e). Taylor’s theorem with remainder ensures

that for all x ∈ [0, 1],

c′e(x0)(x−x0) ≤ ce(x)−ce(x0) ≤ c′e(x0)(x−x0)+
B

2
(x−x0)2

This holds, since 0 ≤ c′′e (y) ≤ B for all y. Plugging the

random variable fe into this bound, we find that

ce ≤ c̄e ≤ ce + c′e(x0)E(fe − x0) +
B

2
E((fe − x0)2)

0 ≤ c̄e − ce ≤
B

2
Var(fe).

If zi (i = 1, 2, . . . , n) denotes a collection of independent

Bernoulli random variables with Pr(zi = 1) = P (e),

then the random variable fe has the same distribution

as 1
n

∑n
i=1 zi, so its variance is

Var(fe) =
1

n2
· n ·Var(zi) =

P (e)(1− P (e))

n
.

To bound the dot product (Q−P ) · (c̄−c) from above,

we first note that when Q(e) < P (e) we have (Q(e) −
P (e))(c̄e − ce) ≤ 0. The remaining terms of the dot

product according to lemma 6 satisfy Q(e) − P (e) ≤

Q(e) ≤ (B+1)/(An), and P (e)(1−P (e))/n ≤ P (e)/n ≤
Q(e)/n ≤ (B + 1)/(An2). Hence the dot product is

bounded above by B
2

∑
e
B+1
An ·

B+1
An2 = B

2

(
B+1
An

)2
. Re-

calling that ε ≤ 1/n2, we see that the inequality in

the statement of the lemma is satisfied by setting C =
1
2 + B

2

(
B+1
A

)2
. ut

4 Summary

Given that online learning is quite thoroughly under-

stood in the setting of a single learner [6], it is rather

natural to hope for a thorough understanding of sys-

tems consisting of multiple learners, but the characteri-

zation of such systems in existing work is far from thor-

ough. Several recent papers have pursued this direction

in the context of no-regret learning [3,4,27], but their

findings have been limited to games in which the no-

regret property by itself suffices to establish bounds on

the overall system performance. Our work establishes

that in many cases of interest — and specifically in set-

tings closely related to the reality of distributed systems

— this optimistic view does not materialize. Two sys-

tems consisting of no-regret learners can exhibit huge

performance differences. Nevertheless, our result is in

essence a positive result. It shows that “natural” can-

didates (e.g. Hedge) of no-regret algorithms perform

well. An interesting direction for future research is the

question of how much we can extend the family of allow-

able no-regret algorithms while still allowing for strong

provable performance bounds on the overall system be-

havior.
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to Wardrop equilibria by adaptive sampling methods. In Pro-
ceedings of the 38th annual ACM symposium on Theory of
computing STOC, pp. 653-662, 2006.

11. S. Fischer and B. Vöcking. On the evolution of selfish rout-

ing. In Proceedings of the 12th European Symposium on
Algorithms (ESA), pp. 323-334, 2004.

12. D. Foster and S. M. Kakade Deterministic Calibration and
Nash Equilibrium. In Proceedings of the 17th Annual Con-
ference on Learning Theory Conference on Learning Theory
(COLT), pp. 33-48, 2004.

13. D. Foster, and R. Vohra. Calibrated learning and correlated
equilibrium. Games and Economic Behavior 21:4055, 1997.

14. D. Foster and R. Vohra. Regret in the on-line decision prob-

lem. Games and Economic Behavior 29: 7-35, 1999.
15. D. Fotakis, and A. Kaporis, P. and Spirakis. Atomic Con-

gestion Games: Fast, Myopic andConcurrent. Theory of Com-
puting Systems 47(1):38-59, 2010.

16. Y. Freund, and R. Schapire. Adaptive game playing us-

ing multiplicative weights. Games and Economic Behavior,
29:79-103, 1999.

17. D. Fudenberg, and D. Levine. The Theory of Learning in
Games. MIT Press. 1998.

18. M. Goemans, V. Mirrokni, and A. Vetta, Sink Equilib-

ria and Convergence. In Proceeding of the 46th Annual
IEEE Symposium on the Foundations of Computer Science
(FOCS), pp. 142-154, 2005.

19. S. Hart, and A. Mas-Colell. Stochastic Uncoupled Dynam-

ics and Nash Equilibrium. Games and Economic Behavior
57, 286-303, 2006.

20. R. Kleinberg and G. Piliouras and E. Tardos. Multiplica-
tive updates outperform generic no-regret learning in conges-

tion games. In Proceedings of the 41th ACM Symposium on
Theory of Computing (STOC), 2009.

21. R. Kleinberg, G. Piliouras, and E. Tardos. Load balancing

without regret in the billboard model. In Proceedings of the
28th Symposium on Principles of Distributed Computing
(PODC), pages 56-62, 2009.

22. E. Koutsoupias and C. H. Papadimitriou. Worst-case
equilibria. In Proceedings of the 16th Annual Symposium
on Theoretical Aspects of Computer Science, pp. 404-413,
1999.

23. M. Mavronicolas and P. Spirakis. The price of selfish rout-

ing. In Proceedings of the thirty-third annual ACM sympo-
sium on Theory of computing (STOC), pp. 510-519, 2001.

24. V. Mirrokni and A. Vetta. Convergence Issues in Compet-
itive Games. RANDOM-APPROX, 2004.

25. M. Mitzenmacher. How useful is old information?. In Pro-
ceedings of the 16th Annual ACM SIGACT- SIGOPS Sym-
posium on Principles of Distributed Computing (PODC),
pages 83-91, 1997.

26. G. Piliouras. A learning theoretic approach to game theory.

PhD Thesis, Cornell 2010.
27. T. Roughgarden. Intrinsic Robustness of the Price of Anar-

chy. In Proceedings of the 41th ACM Symposium on Theory
of Computing (STOC), 2009.

28. A. Tang, J. Wang, S. Low. Counter-Intuitive Behaviors in
Networks under End-to-end Control. IEEE /ACM Transac-
tions on Networking, 14(2):355-368, April 2006.

29. H. P. Young, Strategic Learning and Its Limits. Arne Ryde
Memorial Lectures. Oxford, UK: Oxford University Press,
2004.


