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ABSTRACT
We study the limit behavior and performance of no-regret dynamics
in general game theoretic settings. We design protocols that achieve
both good regret and equilibration guarantees in general games. In
terms of arbitrary no-regret dynamics we establish a strong equiva-
lence between them and coarse correlated equilibria.

We examine structured game settings where stronger properties
can be established for no-regret dynamics and coarse correlated
equilibria. In congestion games, as we decrease the size of agents,
coarse correlated equilibria become closely concentrated around
the unique equilibrium flow of the nonatomic game. Moreover, we
compare best/worst case no-regret learning behavior to best/worst
case Nash in small games. We study these ratios both analytically
and experimentally. These ratios are small for 2 × 2 games, be-
come unbounded for slightly larger games, and exhibit strong anti-
correlation.
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1. INTRODUCTION
Understanding the outcome of self-interested adaptive play is

a fundamental question of game theory. At the same time un-
derstanding systems that arise from coupling numerous intelligent
agents together is central to numerous other disciplines such as dis-
tributed optimization, artificial intelligence and robotics.

To take the example of a multi-agent system, the problem of
routing a large number of agents with repeated interactions offers
agents the opportunity to learn from these interactions. In partic-
ular, we investigate how much can be gained from the process of
learning, synthesized in a ratio which we call the value of learn-
ing. The reverse is also considered: what agents risk by following
no-regret learning procedures, the price of learning.

The onset of such inquiries typically focuses on equilibria and
their properties. Since games may have multiple Nash equilibria,
two approaches have been developed: one focusing on worst case
guarantees, known as price of anarchy [17], and one focusing on
best case equilibria known as price of stability [1]. Defined as the
ratio between the social cost at the worst Nash equilibrium and the
optimum, price of anarchy captures the worst possible loss in ef-
ficiency due to equilibration. On the other hand, price of stability
compares the social cost of the optimal Nash against the optimum.

Both approaches depend on the assumption that the agents con-
verge to an equilibrium in the first case. This is a strong assumption
and it is typically weakened to merely asking that the agents’ adap-
tive behavior meets some performance benchmark, such as low re-
gret [22]. An online optimization algorithm is said to exhibit van-

ishing regret when its time average performance is roughly at least
as large as the best fixed action with hindsight.

Price of anarchy bounds for Nash equilibria for several classes
of games are known to extend automatically to this larger class of
learning behavior [20]. This implies that those worst case games
are equally bad both for worst case Nash equilibria as well as for
worst case learning behavior. Nevertheless, this does not mean that
for individual games there cannot be significant gaps between the
worst case performance of no-regret dynamics and Nash equilib-
ria. The existence and size of such gaps for typical games are not
well understood. Contrasting best case equilibria versus best case
learning seems to be completely unexplored despite being a rather
natural way to quantify the benefits of improving the design of our
current learning mechanisms.

Our results. We study the limits and limitations of no-regret
learning dynamics in games. We start by designing a protocol
such that in isolation each such algorithm exhibits vanishing re-
gret against any opponent while at the same time converging to
Nash equilibria in self-play in any normal form game. This result
establishes that no regret guarantees do not pose in principle a fun-
damental obstacle to system equilibration.

We establish a strong equivalence between the time average be-
havior of no-regret dynamics in games and coarse correlated equi-
libria (CCE) which is a relaxation to the notion of correlated equi-
libria. Specifically, given any infinite history of play in a game we
can define for any time T a probability distribution over strategy
outcomes that samples one of the T first outcomes uniformly at
random. It is textbook knowledge that for all normal form games
and no-regret dynamics the distance of this time average distribu-
tion from the set of CCE converges to zero as T grows [22]. We
complement this result by establishing an inclusion in the reverse
direction as well. Given any CCE we can construct a sequence
of no-regret dynamics whose time average distribution converges
pointwise to it as T grows. Hence in any normal form game, un-
derstanding best/worst case no-regret dynamics reduces to under-
standing best/worst case CCE.

In the second part of the paper we exploit this reduction to ar-
gue properties about best/worst case no regret learning dynamics
in different classes of games. We provide a shorter, more intuitive
argument that extends to the case of many but small agents by ex-
ploiting the connection to coarse correlated equilibria. Specifically,
we show that for all atomic congestion games as we increase the
number of agents/decrease the amount of flow they control, any
coarse correlated equilibrium concentrates most of its probability
mass on states where all but a tiny fraction of agents have a small
incentive to deviate to another strategy. The uniqueness of the cost
of equilibrium flow at the limit implies that for these games there
is no distinction between good/bad Nash/learning behavior.



The picture gets completely reversed when we focus on games
with few agents. We define Price of Learning (PoL) as the ratio
between the worst case no-regret learning behavior and the worst
case Nash whereas the Value of Learning (VoL) compares best case
learning behavior to best case Nash. For the class of 2 × 2 (cost
minimization) games PoL is at most two and this bound is tight,
whereas VoL is at least 3/2 and we conjecture that this bound is
tight as well. Both PoL and VoL become unbounded for slightly
larger games (e.g., 2× 3).

We conclude the paper with experimentation where we compute
PoL, VoL for randomly generated games. When plotted against
each other, (PoL,VoL), reveal a strong anti-correlation effect. High
price of learning is suggestive of low value of learning and vice
versa. Understanding the topology of the Pareto curve on the space
of (PoL, VoL) could quantify the tradeoffs between the risk and
benefits of learning.

2. RELATED WORK
No-regret dynamics in games are central to the field of game

theory and multi-agent learning [21]. Our protocols improve upon
prior work that established convergence only in 2 × 2 games [7].
These dynamics are not efficient. Complexity results strongly in-
dicate that no such dynamics exist for general games [11, 14]. In-
stead, this is a characterization result studying the tension between
achieving no-regret guarantees and equilibration.

The algorithm method presented here for convergence to the one-
shot NE while maintaining the no-regret property is similar in spirit
to ones found in papers such as [18] in its tit-for-tat strategies in re-
peated games. However, this paper [18] is concerned with the set
of NE obtained with the Folk Theorem conditions, larger in gen-
eral than the set of one-shot NE. [9] defines a learning algorithm
that converges in polynomial time to a NE of the one-shot game
for 2 players. We extend this result to the case of N players while
adding the requirement of no-regret to the strategies. [10] intro-
duces an online algorithm that all players follow, leading them to
convergence to Nash Equilibrium of the one-shot game. It also has
the same concept of increasing periods of time after which the al-
gorithm “forgets” and restarts. Indeed, a probabilistic bound of the
same type as Hoeffding (in that case, Chebichev) is used to tune
the length of these periods. In our case though, the learning part
happens over the first three stages, while the last one is simply an
implementation of the equilibrium.

The “weak” convergence of time-average no-regret dynamics to
the set of CCE [22] has been useful in terms of extending price of
anarchy [20] guarantees from NE to no-regret learning, which is
usually referred to as the price of total anarchy [6]. Our equiva-
lence result reduces the search for both best/worst case no-regret
dynamics to a search over CCE which define a convex polytope in
the space of distributions over strategy outcomes. In [12], similar
results are proven for calibrated forecasting rules in almost every
game. Our results extend easily to no-internal-regret algorithms
and correlated equilibria (CE). [13] shows that through the defini-
tion of Φ-regret we can have a general definition that encompasses
both no-internal and no-external regret.

In nonatomic congestion games regret-minimizing algorithms
lead to histories of play where on most days the realized flow is an
(ε, δ) approximate equilibrium [5] . In atomic congestion games
general no-regret dynamics do not converge to NE. If we focus on
specific no-regret dynamics such as multiplicative weights updates
equilibration can be guaranteed [16]. Our results establish a hy-
brid of the two results. In atomic congestion games as the size of
individual agents decreases, the set of coarse correlated equilibria
focuses most of its probability mass on states where all but a tiny

fraction of agents have a small incentive to deviate to another strat-
egy. At the limit where the size of each agent becomes infinitesimal
small, coarse correlated equilibria becomes arbitrarily focused on
the unique nonatomic Nash flow.

In the case of utility games, [2] looks at two different social wel-
fare ratios: the value of mediation defined as the ratio between
the best CE and the best NE and the value of enforcement, which
compares the worst CE to the worst NE. The value of mediation is
shown to be a small constant for 2 × 2 games while the value of
enforcement is unbounded, and they both are unbounded for larger
games. Our results for cost (negative utility) games follow more
closely the setting of [8] where once again the cost of worst CE is
compared to the cost of the worst NE.

[4] shows it is NP-hard to compute a CCE with welfare strictly
better than the lowest-welfare CCE. As a result our experimentation
focuses on small instances but nevertheless reveals an interesting
tension between the risks and benefits of learning.

3. PRELIMINARIES
Let I be the set of players of the game Γ. Each player i ∈ I has

a finite strategy set Si and a cost function ci : Si×S−i −→ [0, 1],
where S−i =

∏
j 6=i Sj . A player i ∈ I may choose his strategy

from his set of mixed strategies ∆(Si), i.e the set of probability
distributions on Si. We extend the cost function’s domain to the
mixed strategies naturally, following the linearity of expectation.

Definition 1. A Nash equilibrium (NE) is a vector of distribu-
tions (p∗i )i∈I ∈

∏
i∈I ∆(Si) such that ∀i ∈ I, ∀pi ∈ ∆(Si)

ci(p
∗
i , p
∗
−i) ≤ ci(pi, p∗−i)

An ε-Nash equilibrium for ε > 0 is one such that

ci(p
∗
i , p
∗
−i) ≤ ci(pi, p∗−i) + ε

We give the definition of a correlated equilibrium, from [3].

Definition 2. A correlated equilibrium (CE) is a distribution π
over the set of action profiles S =

∏
i Si such that for all player i

and strategies si, s′i ∈ Si, si 6= s′i,∑
s−i∈S−i

ci(si, s−i)π(si, s−i) ≤
∑

s−i∈S−i

ci(s
′
i, s−i)π(si, s−i)

We will also make use of coarse correlated equilibrium ([22]).

Definition 3. A coarse correlated equilibrium (CCE) is a distri-
bution π over the set of action profiles S =

∏
i Si such that for all

player i and strategy si ∈ Si,∑
s∈S

ci(s)π(s) ≤
∑

s−i∈S−i

ci(si, s−i)πi(s−i)

where πi(s−i) =
∑
si∈Si

π(si, s−i) is the marginal distribution
of π with respect to i.

Definition 4. An online sequential problem consists of a feasible
setF ∈ Rm, and an infinite sequence of cost functions {c1, c2..., },
where ct : Rm → R.

Given an algorithmA and an online sequential problem (F, {c1, c2, . . . }),
if {x1, x2, . . . } are the vectors selected byA, then the cost ofA un-
til time T is

∑T
t=1 c

t(xt). Regret compares the performance of an
algorithm with the best static action in hindsight:

Definition 5. The regret of algorithm A at time T is defined as
R(T ) =

∑T
t=1 c

t(xt)−minx∈F
∑T
t=1 c

t(x).



An algorithm is said to have no regret or that it is Hannan consis-
tent [22], if for every online sequential problem, its regret at time
T is o(T ). For the context of game theory, which is our focus here,
the following definition of no-regret learning dynamics suffices.

Definition 6. The regret of agent i at time T is defined asR(T ) =∑T
t=1 ci(s

t)−mins′i∈Si

∑T
t=1 ci(s

′
i, s

t
−i).

We will also make use of the following inequality from [15].

THEOREM 1. Suppose (Xk)nk=1 are independent random vari-
ables taking values in the interval [0, 1]. Let Y denote the empirical
mean Y = 1

n

∑n
k=1 Xk. Then for t > 0

P(|Y − E[Y ]| ≥ t) ≤ 2 exp
(
− 2nt2

)
4. NO-REGRET DYNAMICS CONVERGING

TO NASH EQUILIBRIUM IN SELF-PLAY

THEOREM 2. In a finite game with N players, for any ε > 0,
there exist learning dynamics that satisfy simultaneously the fol-
lowing two properties: i) against arbitrary opponents their aver-
age regret is at most ε, ii) in self-play they converge pointwise to a
ε-Nash equilibrium with probability 1.

PROOF. We divide the play in four stages. In the first stage,
players explore their strategy space sequentially and learn the costs
obtained from every action profile. In the second stage, they com-
municate by cheap talk their costs. In the third stage, they compute
the desired ε-Nash equilibrium that is to be reached, for ε > 0.
In the fourth stage, players are expected to use their equilibrium
strategies and they monitor other players in case these deviate from
equilibrium play.

The players are expected to follow a communication procedure
and implement a no-regret strategy in the case of another player’s
deviation. Since the first three stages have finite length (though
very long: exponential in the size of the cost matrix [14]), the no-
regret property follows. The restriction on convergence to an ε-NE,
instead of a mixed NE (so ε = 0) arises from the fact that even
games with rational costs can possess equilibria that are irrational
[19].

Settlement on a particular NE can be decided by a fixed rule
before play, such as lexicographically in the players’ actions or the
NE that has the lowest social cost.

In the fourth stage, players have settled on an equilibrium and
will implement it. To fulfill the requirement of pointwise conver-
gence, it is not enough for the players to stick to a deterministic
sequence of plays. We want them to pick randomly a move from
their equilibrium distribution of actions. During this process, there
can happen that the generated sequence of play of an opponent does
not closely match his equilibrium distribution. In that case, the
players need to decide whether the opponent has been truthful but
“unlucky” or deliberately malicious.

We achieve this by dividing the fourth stage in blocks of increas-
ing length. Let n ∈ N denote the block number, we set block n
to have a length of l(n) = n2 turns. On these blocks, the players
will make use of statistical tests to verify that all other opponents
are truthful. We want to find a test such that a truthful but possibly
unlucky player will fail almost surely a finite number of these tests,
while a malicious player will almost surely fail an infinite number
of these.

We first look at the case where we have N players with only two
strategies, 0 and 1. We can then identify the equilibrium distribu-
tion of a player i, to the probability p∗i that he chooses action 1.

Suppose the play is at the n-th block and player i chooses to
implement the mixed strategy pi. Let (Xi

k)k=1,...,l(n) denote the
sequence of strategies chosen by player i, such that Xi

k ∼ B(pi)
and all are independent. Let Y in be the empirical frequency of strat-
egy 1 during block n.

Y in =
1

l(n)

l(n)∑
j=1

Xi
j

If the player is truthful and implements the prescribed NE, then
we have pi = p∗i and we expect the empirical frequency of strat-
egy 1 Y in to be close to p∗i . Otherwise, a malicious player will
choose pi 6= p∗i .

Let Ain denote the event Ain = {|Y in − p∗i | ≥ tn}. In other
words, we are trying to determine how far the empirical frequency
of strategy 1 is from the expected equilibrium distribution. If the
event Ain is realised, then the test is failed: the empirical distribu-
tion of play is too far from the expected NE distribution. The idea
is to make block after block the statistical test more discriminating,
i.e get a decreasing sequence (tn)n such that a truthful player will
only see a finite number of events Ain happen, while a malicious
one will face an infinite number of failures.

We claim that picking t = n−α with 0 < α < 1 is enough.
Indeed by Hoeffding’s inequality we have that

P(Ain) ≤ 2 exp
(
− 2n2t2

)
if the player is truthful (remember that block n has length l(n) =
n2).

Extending the proof to the case where a player i has finite strat-
egy set Si is not hard. Let (pis)s∈S be the distribution that the i-th
player decides to implement, while (pi,∗s )s∈S is the NE distribution
for player i. Let Xi,s

k follow a multinomial distribution of param-
eters (pis)s∈S . Then Y i,sn is the empirical frequency of strategy s
during block n for player i. We define events

Ai,sn = {|Y i,sn − pi,∗s | ≥ tn}.

Then we define our test Ain to be ∪s∈SiA
i,s
n . Using Hoeffding’s

inequality again we obtain:

P(Ain) = P(∪s∈SiA
i,s
n )

≤
∑
s∈Si

P(Ai,sn ) ≤ |Si| × 2 exp(−2n2t2)

Thus
∑

P(Ain) < +∞ for 0 < α < 1, so by Borel-Cantelli we
know that the Ain will only ever happen a finite number of times if
the player is truthful, i.e if E[Y i,sn ] = pi,∗s .

To satisfy the no-regret property, we do the following: if one
of the opponents failed the statistical test described earlier, then all
players will implement a no-regret strategy for a time n2+δ to com-
pensate for that. We call this block of size n2+δ a compensating
block.

If a finite number of tests fails, then the whole sequence satis-
fies the ε-regret property, since players are arbitrarily close to the
ε-Nash equilibrium. When one of the tests fails, say, at block n, the
maximum regret accumulated is of size n2. The following com-
pensating block guarantees that overall regret has grown by a value
bounded by n1−δ , so sublinearly.

We also guarantee that the expected turn number that ends the
last of the truthful player’s potential failed block is not infinity. In-
deed let Bn be the event that the last failed block is the n-th one.
Then



P(Bn) = P(An)× P(Acn+1) . . .

≤ 2 exp(−2n2t2)× 1 . . .

≤ 2 exp(−2n2t2)

We useAc to denote the complement of eventA. The first equal-
ity holds by independence of the blocks, the second inequality is
true from Hoeffding’s and the fact that a probability is less or equal
to 1. We then define L to be the index of the turn that ends the last
compensating block of a truthful player. L is a random variable on
the integers. We have

E[L] ≤
∑
n

( n∑
k=1

(k2 + k2+δ)
)
× 2 exp(−2n2t2) < +∞

We bound E[L] by assuming a truthful player got every test
wrong up to the latest failed one. Then the last turn L occurs at
index

∑
n(n2 + n2+δ). We multiply this by the bound on P(Bn)

and use the property of the exponential to conclude that E[L] is
bounded.

5. EQUIVALENCE BETWEEN COARSE COR-
RELATED EQUILIBRIA AND NO-REGRET
DYNAMICS

The long-run average outcome of no-regret learning converges
to the set of coarse correlated equilibria [22]. Here, we argue the
reverse direction.

THEOREM 3. Given any coarse correlated equilibrium C of a
normal form game with a finite number of players n and finite num-
ber of strategies, there exist a set of n-no regret processes such that
their interplay converges to the coarse correlated equilibrium C.

PROOF. Suppose that we are given a coarse correlated equilib-
rium C of a n-player game∗. There exists a natural number K,
such that all probabilities are multiples of 1/K. We can create a
sequence of outcomes S of length K, such that the probability dis-
tribution that chooses each such outcome with probability 1/K is
identical to the given coarse correlated equilibrium C. The high
level idea is to have the agents play this sequence in a sequential,
cyclical manner and punish any observed deviation from it by em-
ploying any chosen no regret algorithm (e.g., Regret Matching).

Let’s denote the j-th element of this sequence as< xj1, x
j
2, ..., x

j
N >,

where 0 ≤ j ≤ K − 1. Each element of this sequence will act as
a recommendation vector for the no regret algorithm. Given the
sequence above we are ready to define for each of the N players a
no regret algorithm, such that their interplay converges to the given
coarse correlated equilibrium C.

The algorithm for the i-th player is as follows: at time zero she
plays the i-th coordinate of the first element in S. As long as the
other players’ responses up to any point in time t are in unison with
S, that is for every t′ < t and j 6= i the strategy implemented
by player j at time t′ was xt

′ mod K
j then the i-player will follow

the recommendation of the S sequence playing xt mod K
i . How-

ever, as soon as the player recognizes any sort of deviation from S
by another player then the player will just disregard any following
∗We will assume that all involved probabilities are rational. Since
the set of coarse correlated equilibria is a convex polytope defined
Ax ≤ b where all entries of A, b are rational every correlated
equilibrium involves rational probabilities or can be approximated
with arbitrarily high accuracy by using rational probabilities.

recommendations coming from S and will merely follow from that
point on a no regret algorithm of her liking.

It is straightforward to check that in self-play this protocol con-
verges to the given coarse correlated equilibrium C. We need to
also prove that all of these algorithms are no-regret algorithms.
When analyzing the accumulated regret of any of the algorithms
above we split their behavior into two distinct segments. The first
segment corresponds to the time periods before any deviation is
recorded from the recommendation provided by C. For this seg-
ment, the definition of coarse correlated equilibrium implies that
each agent experiences bounded total regret (only corresponding to
the last partial sequence of length at mostK). Once a first deviation
is witnessed by the player in question, she turns to her no-regret al-
gorithm of choice and the no regret property then follows from this
algorithm. As a result, each algorithm exhibits vanishing (average)
regret in the long run.

6. COLLAPSING EQUILIBRIUM CLASSES

6.1 Congestion games with small agents
We have a finite ground set of elements E. There exist a con-

stant number k of types of agents and each agent of type i has an
associated set of allowable strategies/paths Si. S is the set of pos-
sible strategy outcomes. Let Ni be the set of agents of type i. We
assume that each agent of type i controls a flow of size 1/|Ni|,
which he assigns to one of his available paths Si. This can also
be interpreted as a probability distribution over the set of strategies
Si. Each element e has a nondecreasing cost functions of bounded
slope ce : R → R which dictates its latency given its load. The
load of an edge e is `e(s) =

∑
i
ki
|Ni|

, where ki the number of
agents of type i which have edge e in their path in the current strat-
egy outcome. The cost of any agent of type i for choosing strategy
si ∈ Si is csi(s) =

∑
e∈si ce(`e(s)). In many cases, we abuse

notation and write `e, csi instead of `e(s), csi(s) when the strategy
outcome is implied. The social cost, i.e., the sum of agents’ costs,
is equal to C(s) =

∑
e ce(`e)`e. Finally, it is useful to keep track

of the flows going trough a path si or an edge e when focusing on
agents of a single type i. We denote these quantities as `isi(s) and
`ie(s) =

∑
si3e `

i
si(s). For any strategy outcome s and any type i,∑

si∈Si
`isi(s) = 1 defining a distribution over Si.

We normalize the cost functions uniformly so that the cost of any
path as well as the increase to the cost of any path due to the devia-
tion by a single agent are both upper and lower bounded by absolute
positive constants. To simplify the number of relevant parameters
we treat the number of resources, paths as a constant.

THEOREM 4. In congestion games with cost functions of bounded
slope, as long as the flow that each agent controls is at most ε, any
coarse correlated equilibrium applies at least 1 − O(ε1/4) proba-
bility to set of outcomes where at most O(ε1/8) fraction of agents
have more than O(ε1/8) incentive to deviate.

PROOF. Let π be a coarse correlated equilibrium of the game
and let π(s) the probability that it assigns to strategy outcome s.
By definition of CCE, the expected cost of any agent cannot de-
crease if he deviates to another strategy. We consider two possible
deviations for each agent of type i. Deviation A has the agent de-
viating to a strategy that has minimal expected cost according to π
(amongst his available strategies). Deviation B has the agent devi-
ating to the mixed strategy that corresponds to expected flow of all
the agents of type i in π. If each agent controlled infinitesimal flow



then his cost would be equal to

min
si∈Si

Es∼π[
∑
e∈Si

ce(`e(s))]

and ∑
si∈Si

Es∼π[`isi(s)]Es∼π[
∑
e∈Si

ce(`e(s))]

when deviating to A and B respectively.
Furthermore, his expected cost at π would be less or equal to

his cost when deviating to A, which would again be less or equal
to his cost when deviating to B. Due to the normalization of the
cost functions and the small flow ≤ ε that each agent controls this
ordering is preserved modulo O(ε) terms. This ordering and size
of error terms is preserved when computing the (expected) social
costs according to π, the sum of the deviation costs when each
agent deviates according to A and the sum of all deviation costs
when they deviate according to B. I.e.

Es∼π[C(s)] ≤
∑
i

min
si∈Si

Es∼π[
∑
e∈Si

ce(`e(s))] +O(ε)

≤
∑
i

∑
si∈Si

Es∼π[`isi(s)]Es∼π[
∑
e∈Si

ce(`e(s))] +O(ε)

By applying Chebyshev’s sum inequality we can derive that for
each edge e

Es∼π[`e(s)]Es∼π[ce(`e(s))] ≤ Es∼π[`e(s)ce(`e(s))]

Taking summation over all edges, we produce the inverse of our
first inequality, since `e(s) =

∑
i

∑
si3e `

i
si(s), implying that all

related terms are equal to each other up to errors of O(ε).
By linearity of expectation we have that

Es∼π

[(
`e(s)−Es∼π[`e(s)]

)
ce(Es∼π[`e(s)])

]
= 0.

Combining everything together we derive that

Es∼π

[∑
e

(
`e(s)−Es∼π[`e(s)]

)
·
(
ce(`e(s))− ce(Es∼π[`e(s)])

)]
= O(ε).

Since costs ce(x) are nondecreasing, the function whose expec-
tation we are computing is always nonnegative. In fact, since we
have assumed that the slope of the cost functions is upper, lower
bounded by some fixed constants we have that

Es∼π
∑
e

(
`e(s)−Es∼π[`e(s)]

)2

= O(ε).

By applying Cauchy-Schwarz inequality, we derive that

Es∼π
∑
e

|`e(s)−Es∼π[`e(s)]| = O(
√
ε)

The coarse correlated equilibrium π is closely concentrated around
its “expected” flow Es∼π[`e(s)]. For simplicity we denote this
continuous flow y. The set of strategy outcomes S′ ⊂ S with∑
e |`e(s

′) − `e(y)| > ε1/4 must receive (in π) cumulative prob-
ability mass less than O(ε1/4). If we consider the rest strategy
outcomes, which we denote as “good”, then we have that in each
“good" outcome both the social cost (i.e. the sum of the costs of
all agents) as well as the cost of the optimal path are always within
O(ε1/4) of the respective social cost and cost of the optimal path

under flow y. Finally, by combining our main inequality with the
fact that Es∼π

∑
e |`e(s) − Es∼π[`e(s)]| = O(

√
ε) we have that

the social cost under flow y are within O(
√
ε) of the cost of the

optimal path under y.† Hence, all of the “good” outcomes have so-
cial cost within O(ε1/4) of the cost of their own optimal path. So,
at most O(ε1/8) agents in each “good” outcome can decrease their
cost by more than O(ε1/8) by deviating to another path.

6.2 CE = CCE for N agents 2 strategy games

PROPOSITION 1. For games where all players have only two
strategies, the set of coarse correlated equilibria is the same as the
set of correlated equilibria.

PROOF. Let i be one of the players, suppose his two strategies
are A and D, where we pick D to be the deviating one. Then the
requirement for correlated equilibrium states that∑
s−i∈S−i

ui(s−i, D)π(s−i, A) ≥
∑

s−i∈S−i

ui(s−i, A)π(s−i, A)

while the corresponding one for coarse correlated equilibrium is∑
s−i∈S−i

ui(s−i, D)(π(s−i, A) + π(s−i, D)) ≥∑
s−i∈S−i

(ui(s−i, D)π(s−i, D) + ui(s−i, A)π(s−i, A))

which is equivalent after removing the
∑
s−i∈S−i

ui(s−i, D)π(s−i, D)

term on both sides.

7. SOCIAL WELFARE GAPS FOR DIFFER-
ENT EQUILIBRIUM CONCEPTS

We define a measure to compare equilibria obtained under no-
regret algorithms to Nash equilibria: the value of learning. This
measure quantifies by how much the players are able to decrease
their costs when relaxing the equilibrium requirements from Nash
to CCE.

Definition 7. Define the value of learning in cost games VoL as
the ratio of the social cost of the best Nash equilibrium to that of
the best coarse correlated equilibrium.

VoL(Γ) =
best NE

best CCE
†Since we have

Es∼π
∑
e

|`e(s)−Es∼π[`e(s)]| = O(
√
ε)

the terms ∑
i

min
si∈Si

Es∼π[
∑
e∈Si

ce(`e(s))]

and ∑
i

min
si∈Si

∑
e∈Si

ce(Es∼π[`e(s)])

as well as the pair of∑
i

∑
si∈Si

Es∼π[`isi(s)]Es∼π[
∑
e∈Si

ce(`e(s))]

with the term∑
i

∑
si∈Si

Es∼π[`isi(s)]
∑
e∈Si

ce(Es∼π[`e(s)])

are withinO(
√
ε) of each other, but the first and last term are within

O(ε) of each other, implying that all terms are within O(
√
ε).



Since the set of NE is included in the set of CCE, then the best
NE in terms of social cost will always be greater than the best CCE.
Thus we take the ratio so that the value of learning is always greater
than or equal to 1, a convention also found in other papers related
to the price of anarchy [2, 8].

Conversely, we define the price of learning as the ratio of the
worst CCE to the worst NE.

Definition 8. Define the price of learning PoL in a cost game Γ
as the ratio of the social cost of the worst coarse correlated equilib-
rium to that of the worst Nash equilibrium.

PoL(Γ) =
worst CCE
worst NE

This approach is not too dissimilar to the one adopted in [8],
which defines the ration of the worst CE to the worst NE as the price
of mediation. With the help of proposition 1, we can extend their
result to learning algorithms that possess the no-regret property.

7.1 2x2 games
Denote by Γ2×2 the class of 2 × 2 games. We are interested in

the best-case scenario: how high the ratio of the value of learning
can get for all 2× 2 games.

Definition 9. Denote by VoL(Γ2×2) = supΓ∈Γ2×2
VoL(Γ) the

value of learning for the class of 2× 2 games.

PROPOSITION 2. VoL(Γ2×2) ≥ 3
2

PROOF. Consider the following cost game for x > 1

L R( )
T 0, x− 1 x, x
B 1, 1 x− 1, 0

The game admits three NE: (T,L), (B,R) and ((0.5, 0.5), (0.5, 0.5)).
The first two have social cost equal to x−1 while the latter’s is x/2.
Hence for x > 2, the social cost of the best NE is x− 1.

The correlated equilibrium that minimizes social cost assigns
probability 1/3 to every action profile except for (T,R). Its so-
cial cost is 2x/3. Hence, in this game, VoL = 3(x−1)

2x
. Taking

x −→ +∞, we derive VoL(Γ2×2) ≥ 3
2

.

We conjecture that this 3
2

bound is tight, i.e, there is no 2 × 2
game Γ such that VoL(Γ) > 3/2.

To support this claim, we have run numerical simulations on
games generated from a random uniform distribution. An inter-
esting result is the predominance of games for which the ratios are
1, i.e mediation does not better the social welfare/cost. We then ob-
serve higher ratios at a lower rate, hence our histograms look like
those of a power law (figure 1). The obtained ratios come close
to the 3/2 threshold, without going further (only a few ratios ap-
proaching 1.4 were observed over 107 simulations).

PROPOSITION 3. PoL(Γ2×2) = 2

PROOF. By proposition 1, the social cost of the worst CE is
equal to the social cost of the worst CCE, since the set of CE is the
same as the set of CCE. Then by [8], we have that PoL(Γ2×2) =
2.

In figure 2 we present a 2D histogram of the joint distribution
of the VoL and PoL. 106 games were generated and for each we
compute both values. The size of the dot is representative of how
many games possess particular values for the VoL and the PoL.

Figure 1: Histogram of values of learning obtained over 107

simulations for 2×2 games. A log10 scale is used for the y-axis.

Figure 2: 2D histogram of VoL and PoL over 106 simulations
for 2 × 2 games. The count legend is to be interpreted as a
power of ten (so count of 5 is 105)

7.2 Larger games
Next, we examine larger games, i.e., games with more than 2

players and/or more than 2 strategies per player. Let Γm1,m2 de-
note a 2 player game with respectively m1 and m2 strategies for
each player.

PROPOSITION 4. For sets of games Γm1,m2 , max(m1,m2) >
2, we have VoL(Γm1,m2) = +∞.

PROOF. Consider for ε < 1
2

the game

L C R( )
T 1− ε, 1− ε 2ε, 3ε

2
2ε, 1

2

B 1
2
, 2ε ε, 1− ε 1, 2ε

The game admits three NE: (L,B), ((0, 1), (2/3, 0, 1/3)) and
(2/3, 1/3), (0, 1−ε, ε). Of the three, the latter has the lowest social
cost, equal to 1/3 + o(ε), where o(ε) −→ε→0 0.

We can define the following correlated equilibrium π:

L C R( )
T 0 1− 5ε

2
ε

B ε 0 ε/2

The best social cost in a correlated equilibrium will be lower than
that of π, which is o(ε). We also have that the best social cost in a
CCE will be lower than that of a CE.

Thus taking ε→ 0, we obtain an unbounded VoL.

Since the set of CE ⊆ CCE, we can again extend some results
from previous papers to the latter set.



Figure 3: Histogram of ratios best NE/best CCE (VoL) ob-
tained over 106 simulations for 3× 3 games.

Figure 4: 2D histogram of VoL and PoL over 106 simulations
for 3 × 3 games. The count legend is to be interpreted as a
power of ten (so count of 5 is 105). We zoomed in the portion
[1, 2.5]2 to show finer results.

PROPOSITION 5. For games Γm1,m2 , max(m1,m2) > 2, we
have PoL(Γm1,m2) = +∞.

PROOF. Since CE ⊆ CCE, the social cost of the worst CCE is
higher than that of the worst CE. By [8] we have that PoM = +∞,
hence PoL = +∞.

We run a number of simulations to see how VoL is distributed for
random games (figure 3). We have also included a 2D histogram
(figure 4) showing (VoL, PoL) for a number of generated games.
Some sampled games have high VoL and some high PoL but not
both, indicating a competitive relationship between the two quanti-
ties.

8. CONCLUSION
No-regret learning, due to its simplicity to implement in multi-

agent settings, has seen considerable exposure in the literature of
the last decade. The convergence of play to the set of coarse corre-
lated equilibria is one property that makes these learning algorithms
useful in practice. But if we look closer, it is not clear where this
convergence leads the play. We have first shown that we can steer
it using a somewhat unnatural algorithm to any NE of the one-shot
game, while maintaining the no-regret property. In the next sec-
tions, we have understood better how the class of CCE relates to
no-regret dynamics, and to the smaller class of CE. This lead us
to define more general measures of the price of anarchy: if it is
hard to predict where the play following no-regret dynamics will
go, we are at least able to give some PoA bounds on the resulting
payoffs. This section is concluded with experimental results that
show a concentration of small ratios, indicating a closeness to NE
payoffs. The question of the Value of Learning for 2 × 2 games is

left open, with our proven lower bound of 3/2, which we believe to
be tight.
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