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Abstract

Cournot and Bertrand oligopolies constitute the two most prevalent models of firm competi-
tion. The analysis of Nash equilibria in each model reveals a unique prediction about the stable
state of the system. Quite alarmingly, despite the similarities of the two models, their projec-
tions expose a stark dichotomy. Under the Cournot model, where firms compete by strategically
managing their output quantity, firms enjoy positive profits as the resulting market prices ex-
ceed that of the marginal costs. On the contrary, the Bertrand model, in which firms compete
on price, predicts that a duopoly is enough to push prices down to the marginal cost level.
This suggestion that duopoly will result in perfect competition, is commonly referred to in the
economics literature as the “Bertrand paradox”.

In this paper, we move away from the safe haven of Nash equilibria as we analyze these models
in disequilibrium under minimal behavioral hypotheses. Specifically, we assume that firms adapt
their strategies over time, so that in hindsight their average payoffs are not exceeded by any
single deviating strategy. Given this no-regret guarantee, we show that in the case of Cournot
oligopolies, the unique Nash equilibrium fully captures the emergent behavior. Notably, we
prove that under natural assumptions the daily market characteristics converge to the unique
Nash. In contrast, in the case of Bertrand oligopolies, a wide range of positive average payoff
profiles can be sustained. Hence, under the assumption that firms have no-regret the Bertrand
paradox is resolved and both models arrive to the same conclusion that increased competition
is necessary in order to achieve perfect pricing.
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1 Introduction

Oligopoly theory deals with the fundamental economic problem of competition between two or
more firms. In this work we study the conditions under which an oligopoly arrives at stability.
We focus on the two most notable models in oligopoly theory: Cournot oligopoly|[7], and Bertrand
oligopoly[5]. In the Cournot model, firms control their production level, which influences the market
price. In the Bertrand model, firms choose the price to charge for a unit of product, which affects
the market demand.

Competition among firms in an oligopolistic market is a setting of strategic interaction, and
is therefore analyzed within a game theoretic framework. Cournot and Bertrand oligopolies are
modeled as strategic games, with continuous action sets (either production levels or prices). In
both models the revenues of a firm are the product of the firm’s part of the market times the price;
In addition, a firm incurs a production cost, which depends on its production level.

In the most simple oligopoly model, the firms play a single game, where they all take actions
simultaneously. All the firms produce the same good; the demand for this product is a linear in the
total production; the cost of production is fixed per unit of production. In this oligopolistic market,
a Nash equilibrium in pure strategies exists in both Cournot and Bertrand models. Interestingly,
despite the strong similarity between these models, the Nash equilibrium points are very different:
in Bertrand oligopoly, Nash equilibrium drives prices to their competitive levels, that is, the price
equals the cost of production, while in Cournot oligopoly, the price in the unique Nash equilibrium
is strictly above its competitive level. Liu [14] showed that the uniqueness of equilibrium in the
linear demand, linear cost model, carries on to correlated equilibrium. Yi [23] have extended Liu’s
work to the case of Cournot oligopoly where firms produce different products, that are strategic
substitutes, and to the case of weakly convex production cost functions.

Equilibrium analysis alone, however, cannot capture the dynamic nature of markets. In the
real world, trading is performed over long periods of time, which gives firms the chance to adjust
their actions e.g, their prices or production levels. If we assume that the essential market attributes
remain unchanged, then this situation gives rise to a repeated game, obtained by repeated play of
the original simultaneous, one shot game.

One approach for analyzing the repeated oligopolistic game, is through studying the Nash
equilibrium of the repeated game. This models a situation where the firms “commit” to a strategy,
and their joint commitment forms an equilibrium (see [15], Chapter 12.D). In practice however,
an important feature of an oligopolistic market is that different firms are not perfectly informed
about different aspects of the market, e.g., the attributes of the other participants, and cannot
pre-compute, or agree on a Nash equilibrium of the repeated game before they begin interacting.

A more pragmatic approach for studying such repeated interactions is through the analysis of
adaptive behavior dynamics (see, [12, 24]). The goal here is to investigate the evolution of the
repeated game, when the agents (firms) play in accordance to some “natural” rule of behavior. In
the setting of an oligopolistic market, we would want a natural behavior to comply with “rationality”
and hopefully give rise to some sort of profit maximization on the side of a firm. Another natural
aspiration is that our behavior rules should be “distributed”, which means that firms should be able
to make their choices in each period based only on their own payoffs, and independently of other
firms (in most markets, a firm cannot tell with certainty what are the payoffs, and costs of other
firms). The central question, in such a setting, is whether the behavior dynamics finally converge,
as this would imply long term stability of the market.

Dynamic behavior in Cournot and Bertrand oligopolies have been studied before. Cournot [7]



considered the simple best response dynamics, where at every step of the repeated game, firms
react to what happened in the market on the previous step. Cournot showed that in the case of
a duopoly, the simultaneous best response dynamics converges to the unique Nash equilibrium of
the one shot game, i.e., after sufficiently many steps the two firms will play their Nash equilibrium
strategies on every subsequent step. However, this result does not generalize to an arbitrary number
of firms, as shown by Theocharis [20].

Milgrom and Roberts [16, 17] were the first to explore connections between Cournot compe-
tition and super-modular games as a way to show convergence results for learning dynamics. In
their work (as well as in followup papers [2, 21]) Cournot duopolies as well as specific models of
Cournot oligopolies are shown to exhibit strategic complementarities. This identifying property of
supermodular games is shown to imply convergence to Nash equilibrium for a specific class of learn-
ing dynamics, known as adaptive choice behavior. This class of learning dynamics encompasses
best-response dynamics and Bayesian learning but is generally orthogonal to the class of dynamics
that we will be focusing on.

In this paper we are interested in dynamic behaviors where firms minimize their long term
regret'. Regret compares the firm’s average utility to that of the best fixed constant action (e.g.,
constant production level in Cournot, and constant price in Bertrand). Having no-regret means
that no deviating action would significantly improve the firm’s utility (see [6]). Several learning
algorithms [25], [13],are known to offer such guarantees, as their average regret bounds are o(T),
where T is the number of time steps.

Regret minimization procedures prescribe to some rather desirable requirements in regards to
modeling market behavior. Firstly, they are rational, in the sense that an agent is given guarantees
on her own utility regardless of how the other agents act. Moreover, they are distributed, since an
agent needs to be aware only of her own utility. Many of the no regret procedures[11] are rather
intuitive, as they share the idea that agents increase the probability of choosing actions that have
been performing well in the past. Several learning procedures are known to be of no-regret, but
more importantly, the assumption is not tied to any specific algorithmic procedure, but merely
captures successful long-term behavior. Lastly, no-regret guarantees can be achieved even in the
“multi-armed bandit” setting[3, 10, 1], where the input for the algorithm consists only of the payoffs
received. This feature is important in the case that firms are not fully aware of the market structure
(i.e., demand function), and are maybe even uncertain regarding their own production costs.

In the most relevant result to our work, Even-Dar et al.[9] study no regret dynamics in a class of
games that includes Cournot competition with linear inverse market demand function, and convex
costs functions. They show that the average production level of every firm, as well as it’s average
profits, converge to the ones in the unique Nash equilibrium of the one shot game.

1.1 Our results

In this work we examine the behavior of no regret dynamics in Cournot and Bertrand oligopoly
models.

In the classic model of Bertrand oligopoly [5], it is well known that oligopolies with more than
two firms exhibit several trivial Nash equilibria but in all of them the prices are equal to the
marginal costs and all players make zero profit (Bertrand paradox). This phenomenon has been

'Regret is sometimes also referred to as external regret.
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Table 1: Overview of results

verified for correlated equilibria only for the case of a duopoly?, where correlated equilibria are
unique[16]. In our work, we show that under no-regret behavior the zero-profit postulate does not
hold even in the case of two players. In fact, we show that not only does the market not necessarily
converge to zero profit outcomes, but that the players can actually enjoy significant profits. In
summary, our main results for Bertrand oligopolies under no-regret have as follows:

1. The Bertrand paradox does not hold anymore; firms enjoy non-zero profits under no-regret
behavior.

2. Moreover, the identified profits can be rather significant when the number of players is small
(e.g. 17% of optimal profits in the case of a duopoly). Profits however, tend to go to zero
quickly as the number of firms increases.

Interestingly, our observations about no-regret behavior in Bertrand oligopolies agree to a large
extent both with experimental work [8], as well as with empirical observations about real world
oligopolistic markets [19].

The study of correlated equilibria [14, 23] as well as of no-regret dynamics in [9] in Cournot
oligopolies, has been an area of interest in both economics as well as computer science. In our
work, we analyze a model of Cournot equilibria, which is a strict generalization of all the previously
examined models, under no-regret dynamics. In fact, our results can be extended to all dynamics,
in which each player’s average payoff dominates the one they would receive if they always deviated
to their respective Nash equilibrium strategy. This is a strict generalization of no-regret dynamics,
since no-regret dynamics must fare well against all fixed strategies. In a novel approach in this line of
work, we consider the evolution of the market not only from the perspective of the firms (individual
production levels, profits), but also from the consumers’ perspective (aggregate production level,
prices) which leads to new insights. As a result, we can prove a single unifying message for all
models examined: the daily prices converge to their level at Nash equilibrium.

In summary, our main results for Cournot oligopolies under no-regret have as follows:

’In [22] it is claimed that the correlated equilibria of Bertrand games are unique under some special cases.



1. In Cournot oligopoly with linear inverse demand function, and weakly convex costs, when
every firm experiences no-regret, the empirical distribution of the daily overall production
level, as well as of the daily prices, converges to a single point that corresponds to the Nash
equilibrium of the one shot game.

2. When the firms produce products that are not perfect substitutes i.e., when even the tiniest of
product differentiation is introduced, the empirical distributions of all market characteristics
including the daily production levels of every firm converge to their levels in Nash equilibrium.

3. Some product differentiation is necessary in order to alleviate the nondeterminism of the
day-to-day behavior on the side of the firms.

Table 1 summarizes what is known about equilibrium, and no-regret in Cournot and Bertrand
oligopolies.

2 Preliminaries

2.1 Models of Oligopoly

We formally define Cournot oligopoly, and Bertrand oligopoly, as strategic games, with continuous
action space.

Definition 2.1. A Cournot oligopoly is a game between n firms, where the strategy space S; of
firm i is the span of its production level q;. Typically, S; is defined to be the interval [0,00). The
utility function for firm i is wi(qu,...,qn) = Pi(q1, ..., qn)qi — ¢i(q;), where P; is the market inverse
demand function for the good of firm i, which maps the vector of production levels to a market
clearing price in RT.

Our focus is on the case of linear inverse demand function. The utility of a firm ¢ as a function
of the firms’ production levels is w;(q1,...,qn) = (a — bQ)q; — ¢i(¢;), where a and b are positive
constants, and ) = ). ¢; denotes the total product supply. In Section 4 we consider an extension
of Cournot oligopoly with perfect substitutes, to the case of product differentiation, where the price
of firm ¢ depends in an asymmetric manner on his own production level, and the production levels
of the other firms. In this case the market inverse demand function P?(q) is given by Pi(q) =
a; —biq; —biviQ—; = a; — bj(1 —;)q; — biviQ, where ~; denotes the degree of product differentiation
between products, 0 < v; <1, b; > 0.

Definition 2.2. A Bertrand oligopoly is a strategic game between n firms, where the strateqy space
P; of firm i is its declared price p;, which lies in the interval of all possible prices [0,00), and its
utility function is

wi(p1y. - yon) = Di(p1y. .. 0n)pi — ¢i(Di(p1,-..,pn)), where D; is the market demand function of
firm i, that maps from the vector of firms prices to a demand in RT.

We consider Bertrand oligopoly with a linear demand function, in which the market demand is
equally shared among the firms with the least price:

0 p; > pj, for some j

Di(pla v apn) - { a—p;

bm+1) Pi < pj for all j, and m = [{j # i|p; = pi}|



Intuitively, this means that the market demand goes down linearly as the minimal announced
price increases. If the minimal price has been offered by more than one firms, these firms share the
market demand equally.

2.2 Regret Minimization

We will give a formal definition of having no-regret in an online sequential problem.

Definition 2.3. An online sequential problem consists of a feasible set F' € R™, and an infinite
sequence of functions {f*, f2...,}, where f' : R™ — R.

At each time step ¢, an online algorithm selects a vector t € R™. After the vector is selected,
the algorithm receives f!, and collects a payoff of ff(x!). All decisions must be made online, in
the sense that an algorithm does not know f! before selecting zf, i.e., at each time ¢, a (possibly
randomized) algorithm can be thought of as a mapping from a history of functions up to time ¢,
fY o ft71 to the set F.

Given an algorithm A and an online sequential problem (F, {f!, f2,...}), if {=!,2%,...} are the
vectors selected by A, then the payoff of A until time T is Zthl fi(z%). The payoff of a static
feasible vector x € F, is Zthl ft(z). Regret compares the performance of an algorithm with the
best static action in hindsight:

Definition 2.4. The external regret of algorithm A, at time T is defined as

T

T
R(T) = max > fi(z) = > f'(a").
t=1

cF
A —)

An algorithm is said to have no-external regret, if for every online sequential problem, its regret at
time T is o(T).

The regret of a firm in a repeated oligopoly game: Consider the case of n firms that engage in
a repeated Cournot (alternatively Bertrand) oligopoly game, and suppose that {z'}2°; is a sequence
of vectors, where x! represents the production levels (alternatively, prices), set by the firms at time
t. The regret of firm i at time T is defined as R;(T) = maxyes, Y1, wi(y, xt ;) — S0, (ui(z?)),
where w; is the utility function of firm ¢, and S; is the strategy set of i.

3 Bertrand Oligopolies

We will be focusing on the case where are the all firms share the same linear cost function (i.e.
Ci(x) = cx for all 7). The set of Nash equilibria of this game consists of all price vectors such that
the prices of at least two firms are equal to ¢, whereas all others are greater than c. Although
there exist multiple Nash equilibria, all of them imply the same market prices where the firms sell
at marginal cost and hence no profit is being made. On the contrary, we will show that firms can
achieve positive payoffs while experiencing no-regret. Moreover, we will show that infinitely many
positive profit vectors are sustainable under no-regret guarantees.

We will show that by producing a probability distribution on outcomes of Bertrand oligopolies
such that when the market outcomes are chosen according to this distribution, then each player’s
expected payoff is at least as large as the expected payoff of her best deviating strategy, given that



all other players follow the distribution. More formally, we will produce a probability measure F
on (P, ¥),* such that for all i, p/

/P i (pispi) — (Bl p_)|dF (p) > 0

Such probability distributions are referred to as coarse correlated equilibria (CCE)[24]. 1t is straight-
forward to check that, any market history whose empirical distribution of outcomes converges to a
CCE imposes no regret on the involved players. Indeed, the average profits of the players, will con-
verge to their expected values, which by definition of the CCE exhibit no-regret. Conversely, any
CCE can give rise to such a history, merely by infinitely choosing outcomes according to it. There-
fore it suffices to prove that we can achieve positive payoffs payoffs in a CCE. Our constructions
are inspired by observations regarding the structure of Nash in Bertrand games made in [4].

Theorem 3.1. All symmetric linear Bertrand games exhibit coarse correlated equilibria (CCE) in
which all players exhibit positive profits.

Proof. We denote (p — c¢)(a —p)/b by 7(p), which is equal to the utility function when the winning
player is unique. This function in strictly increasing in [c, (a+c)/2]. As a result, we can define the
following distribution:

0 p<p
- 1
Fo(p) = {1— (Z5)71 B<p<ny (1)
1 =7

where 8 > ¢ and v < (a + ¢)/2. Before, we construct the CCE, we will examine some properties of
the mixed strategy profile where each player chooses a strategy according to Fy(p). We will show
that each action in the support of the mixed strategy Fy(p) is optimal ? except from 2.

The probability distribution Fy(p) sets p = v with probability (zgg g)ﬁ The rest of the

probability distribution is atomless, that is Pr(p = z|x < ) = 0. Suppose that the rest n-1 players
play according to this distribution. The expected payoff for playing price 8 < p < + would be equal

to:

Blu] = [1 = Fo(p)]"~'7(p) = 7(B)

Next, we will compute the expected payoff for playing 8. The only way for someone to win
when playing 8 is for everyone else to be playing 8. However, in this case they share the pot. So,

Bl = [(F8) a1 70) _ 7(8)

(7) n oo

Also, just to complete the picture, the expected cost for playing p > v is 0 and the expected
profit for playing p < (3 is less than m(3). Lastly, let us compute the expected utility of the players
m(B) \ it

)"

when all of them play according to this strategy distribution. In this case and if we denote (
as p, we have that:

4P is the set of all strategy (price) profiles and ¥ is the Borel o-algebra on it
3given that all players play according to Fo(p)



Bl = (1 - p)(8) + 0" = (1= "L ()

Now, we will define a probability distribution over outcomes of the Bertrand games and we will
prove that it is a CCE. we will be using three prices «, 3,y such that c < a < <y < (a + ¢)/2.
With probability 1/2 all players play « and with probability 1/2 all players play according to Fjp.
Regarding the expected payoff for each player, we have that with probability 1/2 they all share the
profit at price @ and with probability 1/2 they gain the precomputed payoff of the defined mixed
strategy profile. Specifically,

£l =127 417910 - " Ly s

In order for this to be a CCE it must be the case any deviating player cannot increase his payoff
by deviating to a single strategy given that the rest of the players keep playing according to this
distribution. Let us examine what are the best deviating strategies for a player. First a player
can deviate and play o — € for some small € > 0. Her expected payoff in that case is essentially
() since she will always be winning the competition. It is obvious that any strategy less than
that is clearly worse for him since 7 is increasing in the range [0, ] C [0, (a + ¢)/2]. Another good
deviating strategy for the player is to play a strategy in [3,~) since this is a best response to the
second probability distribution. Actually, given that a player deviates to a price which is greater
than « her best choice is to deviate to any price in the [3,+) range. This is true because the only
way to incur payoff at this point is to maximize her payoff when her opponents play according
to Fy(p). As we have seen, the player achieves a maximum expected payoff of () when playing
within that range. So, the best deviating strategy is either o« — € or something in the range [3,7).
If our current expected payoff exceeds the payoffs at these points then our distribution is a CCE.
So, we wish to have:

1/2”53) +1/2[(1 - nT_lp)ﬂ(ﬁ)] > 7(a), and 1/27T(n0‘) +1/2[(1 - nT_lp)w(B)] >1/27(8) .

Let us try to analyze each relation separately:

127 1ol - P ()] 2 we)
121" 2B > (1 - 5 Inle)
(1_n—1p) n >7T(a)

n 2n—1 "~ w(B)

Similarly, from the second inequality we have:
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So, in order for our probability distribution over outcomes to be a CCE, it suffices that we
choose «, 3 so that:

7(B) n 2n —1

However m(«),w(3) are positive payoffs in the range (0, ] with m(a) < 7w(B8). So, by
choosing proper a, 8 we have reproduce any number in the range (0,1). Hence, all we have to do
is show that we can choose p appropriately such that:

n—1 n

n '0)271—1

(n—1)p<(1-

— "Tfl p)z—7- Again, by manipulating the given inequality we

as well as (n —1)p < 1land 0 < (1
get:

n—1 n <:>( 1+n—1) < n
n—
m—1"= 2,1

(n—1)p<(1-

n 2n—1

It suffices to choose p = 2n171 and Eﬂg = 5-— to satisfy all inequalities. However, p =

g) . So, we have that we need to choose 3 and « such that ”Eﬁ; (527)""1. So, given any

(=




m(vy) € (0, (%)) = (0, (aZbC)Q], we can define 3, a such that the distribution we have defined is a
CCE. The expected payoffs of all players are positive in this CCE and can vary widely. Hence, no
regret behavior can support infinitely many different positive average payoff profiles, in contrast to
Bertrand’s paradox. Finally, this construction establishes that increased competition is necessary
for converging to marginal cost pricing. O

As we see in the figure 1, the profitability of the families of Bertrand no-regret histories we have
identified, decreases much faster than the profitability of the no-regret histories in the Cournot
oligopolies as the number of agents (firms) increases. In fact, for n = 4 players we see that
essentially the prices reach the level of marginal costs as profitability drops to zero. This theoretical
projection is in perfect agreement both with experimental work in the case of Bertrand games [8],
as well as with empirical observations about real world oligopolistic markets [19]. Specifically,
“the rule of three”, as is presented in [19], states that in most markets three major players will
emerge (e.g. ExxonMobil, Texaco and Chevron in petroleum). In order for the smaller companies
to be successful they need to specialize and address niche markets. Our works suggests a possible
quantitative explanation behind this phenomenon, as a result of the steep drop in profitability in
the case of Bertrand markets.

4 Cournot Oligopolies

We will be analyzing a generalization of the Cournot model with product differentiation that was
introduced by Yi[23]. By exploring ideas from that work, we will show how we can generalize its
results and prove tight convergence guarantees in the case of no-regret algorithms. Our model
will be the Cournot competition in the case of linear demand functions with symmetric product
differentiation, where the inverse demand function Pi(q) is given by P'(q) = a; — biq; — biviQ_; =
a; — bi(1 — v;)q; — biviQ, where 7; denotes the degree of product differentiation between products,
0<7 <1,b >0and Q =), ¢ denotes the total product supply. We will assume that the cost
functions are convex and twice continuously differentiable. We denote by ¢* = (¢j,...,q},) a pure
Nash equilibrium of the one-shot game, which is known to exist by [18]. Finally, @* denotes the
aggregate production level at the Nash.

Lemma 4.1. Let q],Q" denote respectively the production level of company i and the aggregate
production level in period T of a differentiated Cournot market with differentiation levels ; for each
product. If each player’s regret converges to zero, then

Proof. By assumption, we have that each player ¢ experiences vanishing regret against any deviating
action s; € §;. Specifically, we can apply this to their respective Nash equilibrium actions g; .

% Z Ui(qT) = gleas}f % (UZ‘(SZ‘, qz ) ) % Z q, 71 th(t) (2)

T=1 t =1

Let us denote the difference u;(¢") — wi(q;,q”;) as A(u]). Equation 2 allows us to bound
S A(u]) from below. Next, we will work on bounding this quantity from above.



S AW = > (Pi(qT)QZ - Cilg]) — (P(q;, dC)aF — CAQE‘)))
=1 T=1
= ) (Pi(qT)qZ — P(qf,q73)a; — (Cilq]) — Ci(qi‘))>
=1
= > (@ —a) (P'(¢") — CiT)) — big]) (3)
T=1

The last line is derived from the mean value theorem 2 and the fact that P'(q},q";) = P'(q7,q",;) +
bi(q] — 47)-

t t

S AW = Y@ - ) (Pa) - CUa) - bigd)
T=1 =1
< Y (4 —a) (PU(a") = PU(a") = (Cila]) - Cila))))
T=1
= > (@ —q) (bi(% - (g —q) —bim(Q" — Q") = C(d; )(a; — Qf)>
=1

where the inequality in the second line follows by the fact at a Nash equilibrium ¢*, we have that

Ju;(q*)

= Pi(q*) — big" — Cl(qF) < 0.
4; (¢") = big; — Ci(q;) <

Finally, the last line is derived by another application of the mean value theorem® and the defini-
tion of the demand functions P*. Now, we will take the following weighted sum of the resulting
inequalities over all players ¢ € N.

i

By dividing the above inequality with ¢ and combining with 2 we conclude that:

ZA <Z(%_1Z T —q)? - Z bm @ qf)(qf—q?))

nyz’r 1 i

_ Z /bz’}/z 1 Z (’Yi _ 1 Z(q;" _ q;‘)Q Z bz% 1 - q:)(@: - q:)) (4)

T=1 Vi i
Given the definition of regret minimizing behavior we have that for all ¢, limsup,_, . Rit(t) <0,
therefore the limsup,_,., of the second terms will greater or equal to 0. Ifhe cost functions are
weakly convex all three terms in the summand are less or equal to 0. As a result, we have that:

3There exists G between ¢f, g; such that Ci(q]) — Ci(q7) = CL(aT)(¢] — q}).
“There exists G/ between 7, qf such that C(q7) — Ci(¢}) = CV(G7)(a] — q}).
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limsup% (FYZ_.IZ(%‘T—Q;K)Q—(QT—Q*P_Z
=1 7 )

I 7 — i) (ar - qz>> =0 )

The lemma follows immediately. O

Depending on the details of the Cournot model, we have the following cases:

A) Perfect substitutes

This is to the simplest case of Cournot competition and was the model analyzed by Even-Dar et.
al. in [9]. We have that v; = 1 and C/(g;) > 0 for all ¢, ¢;. Equation 5 implies that:

t
. 1 T *
hmsup; E QT —Q*)* =0
T=1

Intuitively, this equation suggests that if we exclude a statistically insignificant (sublinear)
number of periods for the history of our no-regret play, then for the rest of the history the overall
production levels converge to Q7 (and therefore the prices (P¥(¢q) = a; — b;Q,)) converge to their
levels at the Nash equilibrium Q*.

Theorem 4.2. Suppose that n firms participate in a homogeneous Cournot oligopoly game of perfect
substitutes with linear demand (P*(q) = a; —b;Q, ) and convex cost functions. If all firms experience
no-regret as t grows to infinity, then given any € > 0, for all but o(t) periods T in [1,t] we have that

QT — Q[ <e.

We should stress here that this is a statement about the day-to-day behavior (i.e. aggregate
production levels) instead of average behavior as in [9](Theorem 3.1.). In particular, this statement
implies that the average action vector and the average utility of each player converge to their
respective levels at the Nash equilibrium, a result that has been shown in [9]. Given the convergence
of the day-to-day characteristics of the market prices and total supply, it is rather tempting to try
to prove a similar statement about the convergence of the action vector and utilities of the firms
and not merely of their averages. Here, we show that this cannot be the case by providing sufficient
conditions for a market history to be of no-regret.

This is essentially a negative result, so it suffices to prove that this holds for as simple a model
as possible. Therefore, we will focus on the special case of the fully symmetric Cournot oligopoly
(a; = a and b; = b) with linear cost functions. It is well known that these games exhibit a unique

Nash ¢* = (g7, 43, .., ¢3) where ¢/ = (a — (n+ 1)c; — > iy ¢5)/((n + 1)b).

Theorem 4.3. Suppose that n firms participate in a homogeneous Cournot oligopoly game with
linear demand (P'(q) = a — bQ,) and linear cost functions and let qx denote the unique Nash of
this game. Any market history, where for all time periods T, Q™ = Q* and where the time average
gi of each player’s actions converges to her Nash strategy q; does not induce regret to any player.

An immediate corollary of the above theorem is that one cannot hope to prove convergence
of the day-to-day action profiles in any model that generalizes the basic linear Cournot model.
Surprisingly, if we introduce product differentiation in the market, then we can actually prove
convergence of all attributes (i.e. action profiles, profits, prices e.t.c) of the market.

11



B) Symmetric product differentiation

In this case, we have that 0 < v; < 1 and C/(g;) > 0 for all 4,¢;. Equation 5 implies that for all
firms 1,

t
: 1 T *\2
hmsupt;(qi _Qi) =0

t—o00

Theorem 4.4. Suppose that n firms participate in a differentiated good Cournot oligopoly game
with linear demand (P'(q) = a; — ¢; — vQ,0 < v < 1). If all firms experience no-regret, then given
any € > 0, as t grows to infinity, for all but o(t) periods T in [1,t] we have that |q] — ¢}| < €, where

q* is the unique Nash equilibrium.
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A Proofs from Section 4

proof of Theorem 4.2. We will prove this by contradiction. Indeed, suppose that this did not hold,
then there would exist € > 0 such that it would not be the case that for all but o(t) periods 7
in [1,¢] we have that |Q™ — Q*| < e. Namely, if we define s; = {7|7 € [1,¢] and |Q7 — Q*| > €}
then there exists ¢ > 0 such for all k there exists t > k such that |s;| > c¢t. Hence, we can define

an infinite subsequence tg,t1,... such that for all k, |s;, | > ctx. Hence for this subsequence, we
have that for all k, i Zi’; Q7 — Q*)? > ce > 0. Therefore, we reach a contradiction, since
lim sup;_, o % Zizl(QT —-Q*)?=0. O

proof of Theorem 4.3. As we have shown in equation 3 for all deviating strategies ¢, we have that:

t t
> (uilq™) = uild)q"0) = > (] —q}) (P(q") — Ci(a]) — bq))
=1 =1
where § between ¢, ¢ is such that C;(q]) — Ci(¢f) = Ci(q])(q] — ¢f). However, in this case we
have that since Cj(x) = ¢;x, Cl(x) = ¢; for all z. We can also substitute P(¢") with a — bQ". As
a result, we derive that

1
n (ui(q") — ui(di q7y))
T=1
1 t
= 7 (@] — ) (a—bQ" — ¢; — bgj)
T=1
1 t
= 2.l - q;) (a — bQ* — ¢; — bgj) (6)
=1
t
1 , na—y. ¢ ,
= — T —_ —_ 2 —Cj — b . 7
2 ) (o= " el ™
t
1 nfa+> . ci—(n+1)g ,
= — T —_ 2 — b .
tT:1(qz Z)( ——r q;
1 t
= 2.l - 4;)b(g; — q;) (8)
T=1
blaf —d) =, -
= " Z;(Qi - q;)

= blgf —4)(d — q;)

where line 6 is derived by hypothesis. Also, lines 7, 8 follow from the fact that the unique Nash
¢ =(¢7,¢5,--.,q5) of these games is of the form

,_a- (n+1)ci — 3 ien €
%= (n+1)b
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Lastly, since by hypothesis we have that lim; . ¢; = ¢, we derive that for each player ¢ and all
deviating actions ¢, we have that:

t
: 1 T T *
lim =~ (ui(q") — wilg},q7,)) = blg] — ¢/)> > 0

t—oo t
=1

Hence in any such market history no players experience regret. O

proof of Theorem 4.4. We will prove this by contradiction. Indeed, suppose that this did not hold,
then there would exist € > 0 such that it would not be the case that for all but o(t) periods
in [0,t] we have that |¢] — ¢f| < e. Namely, if we define s; = {r|7 € [1,t] and |¢] — ¢]| > €}
then there exists ¢ > 0 such for all k there exists ¢ > k such that |s;] > ct. Hence, we can

define an infinite subsequence to,t1, ... such that for all k, |s;, | > ct. Hence for this subsequence,
we have that for all k, i S (qf — qF)? > ¢e® > 0. Therefore, we reach a contradiction, since
. t

limsup, 0 ¢ 271 (4] — ¢f)* = 0. O
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