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Abstract

We study the asymptotic behavior of replicator dynamics in settings of network
interaction. We focus on three agent graphical games where each edge/game is
either a 2x2 zero-sum or a 2x2 coordination game. Using tools from dynamical
systems such as Lyapunov functions and invariant functions we establish that this
simple family of games can exhibit an interesting range of behaviors such as global
convergence, periodicity for all initial conditions as well as limit cycles. In contrast,
we do not observe more complex behavior such as toroids or chaos whilst it is
possible to reproduce them in slightly more complicated settings.

1 Introduction

The analysis of multi-agent system dynamics is a central question for numerous fields
including AI, game theory as well as systems engineering. Despite the undoubtable
importance of such questions identifying a clear path towards analytical success has been
tricky and numerous different approaches have been proposed and explored Shoham et al.
(2007); Vohra and Wellman (2007); Stone (2007).

What makes the analysis of MAL systems so inherently elusive is that multi-agent
systems from their very nature allow the emergence of rather complex patterns of behavior
Gabbai et al. (2005). Even when it comes to simplified evolutionary game theory models
of adaptive agents behavior even relatively simple systems based on variants of Rock,
Paper, Scissors games can lead to chaotic dynamics Sato et al. (2002).

The reason behind this emergence of complexity in evolutionary dynamics has to do
with the building components of these systems: i.e. the dynamics themselves. Replicator
dynamics is arguably the most well known and extensively studied evolutionary dynamic
Weibull (1995); Hofbauer and Sigmund (1998); Sandholm (2010). It is a continuous time
dynamic that is the smooth analogue of the well known Multiplicative Weights Update
algorithm Arora et al. (2012); Kleinberg et al. (2009). Replicator dynamics when applied
to multi-agent games results in nonlinear dynamical systems whose behavior in three
of more dimensions can be chaotic. Examples of complex recurrent behavior have been
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shown to emerge in replicator systems with four or more independent variables Skyrms
(1992); Sato et al. (2002); Chawanya (1996); Piliouras and Shamma (2014). In contrast,
replicator dynamics in two agent, two strategy games (which have only two independent
variables) are known to have simple limit behaviors, either convergence to equilibria or
periodicity Eshel and Akin (1983); Hofbauer and Sigmund (1998); Papadimitriou and
Piliouras (2016). This leaves an interesting not well understood gap about the possible
behaviors of three dimensional replicator dynamics.

Within this context, we focus on a rather natural and archetypal class of three player
games. We consider three player graphical games, where each player corresponds to a
vertex of a triangle and each edge corresponds to a two by two game (triangular game).
Furthermore, we focus on the case where each edge game is either completely adversarial
(zero-sum game) or common utility (coordination/partnership) game. Intuitively, one can
think of these network interactions as encoding friend-or-foe type of relationships, where
coordination games correspond to perfectly aligned interests (friend) whereas zero-sum
games correspond to perfectly misaligned interests (foe).
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Figure 1: All types of 3-player triangular games.

Our Results and Techniques. We analyze the behavior of replicator dynamics
in the setting of friend-or-foe triangles. In the case of all zero-sum interactions (z-z-z),
we prove that as long as the game has a fully mixed Nash equilibrium then all system
trajectories are perfectly periodic. If the game does not have an interior equilibrium then
all interiors initial conditions converge to the boundary. The key technical observation is
that after a change of variables the systems trajectories are shown to be planar (i.e. two
dimensional). Combining this result with techniques for proving more complicated types
of recurrence for replicator dynamics in zero-sum networks we establish the periodicity of
the trajectories. Our technique for proving invariant functions for replicator dynamics is
quite generic and can be applied to large networks of friend-or-foe games. This includes
the case of (z-c-c) games. For this class of games, we can show that the dynamics are still
planar and hence due to the Poincaré-Bendixson theorem these systems provably cannot
exhibit chaos. Boundary limit cycles, interior periodic orbits as well as convergence to
equilibria are all shown to be possible. The case of (c-c-c) is relatively straightforward as
the corresponding three player games are potential games and convergence to equilibria is
guaranteed from all initial conditions. Finally, the case of (z-z-c) we show experimentally
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that it can exhibit limit behavior that is not observed in any of other settings including
boundary limit cycles where the two collaborating (friend) agents and the single agent
without any friends take turns best responding simultaneously to each other. In this
case, the dynamics can result in the evolutionary formation of a team of two cooperating
agents that act in unison against the single opposing agent, which leads to limit cycles.

2 Preliminaries

2.1 Separable polymatrix multiplayer game

A graphical polymatrix game is defined via an undirected graph G = (V,E), where
V corresponds to the set of agents of the game and where every edge corresponds to a
bimatrix game between its two endpoints/agents. We denote by Si the set of strategies
of agent i. We denote the bimatrix game on edge (i, k) ∈ E via a pair of payoff matrices:
Ai,k of dimension |Si| × |Sk| and Ak,i of dimension |Sk| × |Si|. Let s ∈ ×iSi be a strategy
profile of the game. We denote by si ∈ Si the respective strategy of agent i. The payoff
of agent i ∈ V in strategy profile s is equal to the sum of the payoffs that agent i receives
from all the bimatrix games she participates in. Specifically, ui(s) =

∑
(i,k)∈E A

i,k
si,sk

. In

addition, the social welfare of a joint strategy s is defined as SW (s) =
∑

i ui(s).

A randomized strategy x for agent i lies on the simplex ∆(Si) = {p ∈ �|Si|
+ :

∑
i pi =

1}. A randomized strategy x is said to be fully mixed if it lies in the interior of the
simplex, i.e. if xi > 0 for all strategies i ∈ Si.

A (mixed) Nash equilibrium is a profile of mixed strategies such that no agent can
improve her (expected) payoff by unilaterally deviating to another strategy.

2.2 Replicator Dynamics

The replicator equation is commonly used to describe game dynamics of learning
agents in evolutionary game theory. In its continuous form it is give by the following
differential equation:

ẋi , xi[ui(x)− û(x)], û(x) =
n∑

i=1

xiui(x)

where xi is the proportion of type i in the population, x = (x1, . . . , xm) is the vector of
the distribution of types in the population, ui(x) is the fitness of type i, and û(x) is the
average population fitness. The state vector x can also be interpreted as a randomized
strategy of an adaptive agent that learns to optimize over its possible actions given an
online stream of payoff vectors.

An interior point of the state space is a fixed point for the replicator if and only if it
is a fully mixed Nash equilibrium of the game. The interior (the boundary) of the state
space ×i∆(Si) are invariants for the replicator.

We write down the replicator dynamics for the generic multiplayer game in a compact
form as follows:

ẋiR = xiR
(
ui(R)−

∑
R′∈Si

xiR′u
i(R′)

)
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for each agent i ∈ N , action R ∈ Si, and where we define ui(R) = Es−i∼x−i
ui(R, s−i).

2.3 Dynamical Systems Theory

In this section we provide a quick introduction to the main ideas in the topology
of dynamical systems and certain important theorems that we will be hinging upon to
perform the analysis of the three player replicator systems and the book by Bhatia and
Szegö Bhatia and Szegö (2006) serves as a good reference (see also Weibull Weibull
(1995)).

Since our state space is compact and the replicator vector field is Lipschitz-continuous,
we can present the unique solution of our ordinary differential equation as a continuous
map Φ : S × � → S called flow of the system. Fixing starting point x ∈ S defines a
function of time which captures the trajectory (orbit, solution path) of the system with
the given starting point. This corresponds to the graph of Φ(x, ·) : � → S, i.e., the set
{(t, y) : y = Φ(x, t) for some t ∈ �}. The trajectory captures the evolution of the state
of a system given an initial starting point.

A central concept in dynamical systems is the notion of trajectory (or path) through
a state x ∈ S. This corresponds to the graph of the flow Φ(x, ·) : � → S, i.e. the set
{(t, y) : y = Φ(x, t) for some t ∈ �}. If the starting point x does not correspond to an
equilibrium, then we wish to capture the asymptotic behavior of the system (informally
the limit of Φ(x, t) when t goes to infinity). A function f between two topological spaces is
called a homeomorphism if it has the following properties: f is a bijection, f is continuous,
and f has a continuous inverse. A function f between two topological spaces is called
a diffeomorphism if it has the following properties: f is a bijection, f is continuously
differentiable, and f has a continuously differentiable inverse.

Lemma 1. (Topological conjugacy) Two flows Φt : A→ A and Ψt : B → B are conjugate
if there exists a homeomorphism g : A → B such that for each x ∈ A and t ∈ �:
g(Φt(x)) = Ψt(g(x)).

Furthermore, two flows Φt : A→ A and Ψt : B → B are diffeomorhpic if there exists
a diffeomorphism g : A→ B such that for each x ∈ A and t ∈ � g(Φt(x)) = Ψt(g(x)). If
two flows are diffeomorphic, then their vector fields are related by the derivative of the
conjugacy. That is, we get precisely the same result that we would have obtained if we
simply transformed the coordinates in their differential equations Meiss (2007).

Theorem 2. Poincaré Recurrence Poincaré (1890); Barreira (2006)If a flow pre-
serves volume and has only bounded orbits then for each open set there exist orbits that
intersect the set infinitely often.

The Poincaré-Bendixson theorem implies that chaos in not possible in planar dynam-
ical systems in continuous time.

Theorem 3. Poincaré-Bendixson theorem Bendixson (1901); Teschl (2012) Given
a differentiable real dynamical system defined on an open subset of the plane, then every
non-empty compact ω-limit set of an orbit, which contains only finitely many fixed points,
is either a fixed point, a periodic orbit, or a connected set composed of a finite number of
fixed points together with homoclinic and heteroclinic orbits connecting these.
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Lyapunov Function: A Lyapunov (or potential) function V : S → R is a function
that strictly decreases along every non-trivial trajectory of the dynamical system. For
continuous time dynamical systems it holds that dV

dt
≤ 0 with equality attained only at

the equilibrium of the system. For more information see Khalil (1996).

2.4 Information Theory

Entropy is a measure of the uncertainty of a random variable and captures the ex-
pected information value from a measurement of the random variable. The entropy H
of a discrete random variable X with possible values {1, . . . , n} and probability mass
function p(X) is defined as H(X) = −

∑n
i=1 p(i) ln p(i).

Given two probability distributions p and q of a discrete random variable their K-L

divergence (relative entropy) is defined as DKL(p‖q) =
∑

i ln
(

p(i)
q(i)

)
p(i). It is the average

of the logarithmic difference between the probabilities p and q, where the average is taken
using the probabilities p.

For more details the reader should refer to the classic text by Cover and Thomas
Cover and Thomas (2012).

3 Global Analysis of Three Player Games

In this section, we present the global analysis of all possible three player games with
two strategies each, by using different tools from dynamical systems theory. Before look-
ing at the specific sub-cases let us consider a specific structure of the polymatrix game and
show the existence of an invariant function which will help us to argue about the global
dynamics in the specific sub-cases ((z-z-z) and (c-c-z)). We also present simulation
results along side the different cases, with different forms of the classic matching pennies
that is used for playing a zero-sum and a coordination game. To make the notations
simpler, we define the following shorthand:

MP g
i,j (a, b, c, d) =

[
a b
c d

]
(1)

which means that players i, j play a game with payoff matrices as specified and the game
type is g, where g = Z is a zero-sum game and g = C is a coordination game. So the
standard matching pennies between players i, j would be given by MPZ

i,j (1,−1,−1, 1).

3.1 Invariant function for Zero-Coordination-Zero Bipartite Games

We generalise the results obtained in Piliouras and Shamma (2014) for a network zero-
sum game and in Panageas and Piliouras (2016) for bipartite full coordination games to a
more generic bipartite graph (where connections within the partitions are allowed) with
the players within the disjoints sets are playing a zero-sum game between them and the
players between the disjoint sets are playing coordination games with one another. So,
we define the disjoint set of vertices to be VL and VR (VL∩VR = φ and VL∪VR = V ), with
players i, j ∈ VL playing a seperable zero-sum game, while players in i ∈ VL, j ∈ VR are
playing coordination games. Let EL consists of the edges whose end points are players in
VL playing a zero-sum game and similarly define ER for VR. EC consists of player i ∈ VL
and j ∈ VR, where i, j are playing a coordination game. Then,
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Theorem 4. Let Φ denote the flow of the replicator dynamic when applied to a zero-
coordination-zero bipartite game that has an interior (i.e. fully mixed) Nash equilibrium
q then given any (interior) starting point x0 ∈ ×i∆(Si), the cross entropy between q and
the state of system Φ(x0, t) is a constant of the motion, i.e., it remains constant as we
move along any system trajectory.

Proof The support of the state of system (e.g., the strategies played with positive prob-
ability) is an invariant of the flow, so it suffices to prove this statement for each starting
point x0 at time t = 0. We examine the time derivative of

H(q,Φ(x0, t)) = −
(∑

i∈VL

∑
R∈Si

qiR ln(xiR)−
∑

j∈VR

∑
R∈Sj

qjR ln(xjR)
)

. Consider the

time derivative of the function as follows:

dH(q,Φ(x0, t))

dt
=
∑
i∈VL

∑
R∈Si

qiR
d ln(xiR)

dt
−
∑
j∈VR

∑
R∈Sj

qjR
d ln(xjR)

dt

=
∑
i∈VL

∑
R∈Si

qiR
ẋiR
xiR
−
∑
j∈VR

∑
R∈Sj

qjR
ẋjR
xjR

=
∑
i∈VL

∑
(i,m)∈EL

∑
(i,k)∈EC

qTi
(
Ai,mxm + Ai,kxk

)
− xTi

(
Ai,mxm + Ai,kxk

)

−

∑
j∈VR

∑
(j,n)∈ER

∑
(j,k)∈EC

qTj
(
Ai,nxn + Aj,kxk

)
− xTj

(
Aj,nxm + Aj,kxk

)
=
∑
i∈VL

∑
(i,m)∈EL

qTi A
i,mxm − xTi Ai,mxm +

∑
i∈VL

∑
(i,k)∈EC

qTi A
i,kxk − xTi Ai,kxk

−
∑
j∈VR

∑
(j,k)∈EC

qTj A
j,kxk − xTj Aj,kxk −

∑
j∈VL

∑
(j,n)∈ER

qTj A
j,nxn − xTj Aj,nxn

=
∑
i∈VL

∑
(i,m)∈EL

(
qTi − xTi

)
Ai,mxm +

∑
i∈VL

∑
(i,k)∈EC

(
qTi − xTi

)
Ai,kxk

−
∑
j∈VR

∑
(j,k)∈EC

(
qTj − xTj

)
Aj,kxk −

∑
j∈VR

∑
(j,n)∈ER

(
qTj − xTj

)
Aj,nxn

=
∑
i∈VL

∑
EL=(i,m)

(
qTi − xTi

)
Ai,m (xm − qm) +

(
qTm − xTm

)
Am,i (xi − qi)

+
∑

i∈VL,j∈VR

∑
EC=(i,j)

(
qTi − xTi

)
Ai,j (xj − qj)−

(
qTj − xTj

)
Aj,i (xi − qi)

−
∑
j∈VR

∑
ER=(j,m)

(
qTj − xTj

)
Aj,n (xn − qn) +

(
qTn − xTn

)
An,j (xj − qj)

= 0

(2)

Before grouping the terms in the last step, we use the fact that when qk is a fully mixed
Nash equilibirum (Ai,kqk)1 = (Ai,kqk)2 = . . . = (Ai,kqk)|Si|, to make player i indifferent to
playing any pure strategy. Hence, we have

(
qTi − xTi

)
Ai,kqk = 0 for all players i. The last

step is obtained after grouping the terms, to take the transpose of one of terms and apply
the fact that Ai,k = −ATk,i

for all i, k, playing a bimatrix zero sum game. Similarly, we
have Ai,k = ATk,i

for all coordination games played by i, k.

We see that the (z-z-z) games (e.g ., VL = {1, 2, 3},VR = φ) and the (c-c-z) games (e.g .,
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VL = {2, 3},VR = {1}) games are special cases of the zero-coordination-zero bipartite
graph, whereas the (c-c-c) and the (z-z-c) games are not.

3.2 Z-Z-Z Game

As seen above, the (z-z-z) game is a special case of the zero-coordination-zero poly-
matrix game, which is composed of sums of KL divergences between the fully mixed Nash
equilibirum and the trajectory of the system starting in the interior. Now, we leverage
the Theorem 4 and see that the for the sum of the KL divergences to remain constant
for any trajectory starting in the interior, the trajectories have to remain bounded away
from the boundary, otherwise the term tends to infinity. In addition, it is shown in The-
orem 3.3 of Piliouras and Shamma (2014), that, if the flow has an interior fixed point,
then for each open set E that is bounded away from the boundary(bd (×i∆ (Si))) there
exists orbits that intersect E infinitely often. The proof of which requires establishing a
homeomorphism g : ×iint (∆ (Si)) → R

∑
i(|Si|−1). This establishes that the trajectories

are volume preserving (when the flows start in the interior). For a special case with three
players (i = 3) and two actions each |Si| = 2 ∀i, the homeomorphism g is defined to be

ln
(

xiR

xi0

)
and hence let us define ziR := ln

(
xiR

xi0

)
Theorem 5. A 3-player pairwise bimatrix symmetric (z-z-z) game, with trajectories
that start in the interior of the strategy space, upon application of a homeomorphism

ziR := ln
(

xiR

xi0

)
, are constrained to lie on a plane in R2 if the game has an interior

Nash equilibirum. Otherwise the trajectories converge to the boundary. In addition, the
trajectories are always periodic.

Proof Firstly, we note that for a 3 player game with two strategies, we can rewrite the
replicator dynamics as follows (with action 0 being shown here by default).

˙
ln

(
x1

1− x1

)
= a12x2 + a13x3 + (c12 + c13)

˙
ln

(
x2

1− x2

)
= −a12x1 + a23x3 + (c21 + c23)

˙
ln

(
x3

1− x3

)
= −a13x1 − a23x2 + (c31 + c32)

where aij = Ai,j
1,1+Ai,j

1,1−A
i,j
1,2−A

i,j
2,1 for i < j, cij = Ai,j

1,2−A
i,j
2,2 and cji = AT j,i

1,2 −ATk,i

2,2 . The
signs in the above equation are due to the fact that all the players are playing bimatrix
zero sum games. Using the mapping defined above, we can make the following reduction
assuming aij 6= 0 for all i, j (otherwise, the system automatically reduces to a dimension
which is strictly less than 3). Eliminating the term with x3 in the first two equations, we
get

a13ż2 − a23ż1 = a12
(
− a13x1 − a23x2

)
+ a13(c21 + c23)− a23(c12 + c13)

= a12ż3 + a13(c21 + c23)− a23(c12 + c13)− a12(c31 + c32)

Thus,

a13ż2 − a12ż3 − a23ż1 = K
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where,

K = a13 (c21 + c23)− a23 (c12 + c13)− a12 (c31 + c32)

Finally, integrating with respect to time from t = 0 to any generic point in time t, we get
the following equation:

a13z2 − a23z1 − a12z3 = Kt+ C0 (3)

If K > 0, the right hand side of the above equation tends to infinite as t → ∞ and
this implies the magnitude of atleast one of the zi must approach infinity, which implies
xi → 0 or xi → 1. This implies that the dynamics converge to the boundary. A similar
argument follows for K < 0. Now when K = 0, the above equation is the plane given by:

a13z2 − a23z1 − a12z3 = C0 (4)

Hence, any trajectory starting in the interior is forced to lie in this plane. Through
Poincare-Bendixon theorem, we know that the only possible limiting trajectories are
limit cycles, period orbits or convergence to fixed points. However, Piliouras and Shamma
(2014) also showed that the general network zero-sum game exhibits Poincare recurrence
and hence the only possible limiting behaviour in this case is periodicity, such that the
initial state is visited infinitely often.

Corollary 6. The trajectories associated with the 3-player pairwise bimatrix symmetric
(z-z-z) game, accommodates periodic orbits in the interior of the state space if and only
if there is a Nash equilibrium in the interior of the state space.

Proof The fully mixed Nash equilibrium of the system, correspond to the equilbria of
the replicator dynamics which lie in the interior. These are characterized by the system
of linear equations as follows:

(a12)x2 + (a13)x3 = −(c12 + c13) (5)

(−a12)x1 + (a23)x3 = −(c21 + c23) (6)

(−a13)x1 + (−a23)x2 = −(c31 + c32) (7)

Eliminating x3 from the first two equations we get the following equation:

−a12a13x1 − a12a23x2 = (c21 + c23)a13 − (c12 + c13)a23 (8)

Adding the above equation to (−a12) times (−a13)x2 + (−a23)x3 = −(c31 + c32), we
get the left hand side of this to be 0 and the right hand side boils down to K =
a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32), as defined previously. Hence to have a
continuum of equilibria it is necessary and sufficient that K = 0, and the system of linear
equations will then have infinite solutions. From Theorem 5 we have that the limiting be-
havior is periodic in the interior of the state space. However, we also know from Theorem
5, when K 6= 0, or equivalently when this system has no interior equilibria, the limiting
behavior is forced to go to the boundary of the state space thus proving that existence of
interior periodic orbits implies the existence of a Nash equilibirum in the interior of the
state space.
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Figure 2: Plots of trajectories in the (z-z-z) game.

3.3 C-C-Z Game

The (c-c-z) game is also a special case of the zero-coordination-zero bipartite game,
with the invariant function being H = −

(∑2
i=1

∑1
k=0 qik ln (xik) −

∑1
k=0 q3k ln (x3k)

)
.

Now, if we leverage the Theorem 4, we learn that this function can still remain constant
when one of the terms go to ∞ and another term goes to −∞ at the same rate. Hence
it is impossible to conclude if the trajectories will be bounded away from the boundary
(unlike (z-z-z) games). But we use homeomorphism g : ×iint (∆ (Si)) → R

∑
i(|Si|−1),

that was defined previously and this is independent of the type of the game that is being
played and is true due to the property of the replicator equations in general. We define

ziR := ln
(

xiR

xi0

)
, similar to the (z-z-z) game.

Theorem 7. A 3-player pairwise bimatrix symmetric (c-c-z) game, with trajectories
that start in the interior of the strategy space, upon application of a homeomorphism

ziR := ln
(

xiR

xi0

)
, are constrained to lie on a plane in R2 if the game has an interior

Nash equilibirum. Otherwise the trajectories converge to the boundary. In addition, the
trajectories can be periodic in the interior of the state space or exhibit convergence to
limit cycles or fixed points.

Proof Firstly, we note that for a 3 player game with two strategies, we can rewrite the
replicator dynamics as follows (with action 0 being shown here by default).

˙
ln

(
x1

1− x1

)
= a12x2 + a13x3 + (c12 + c13)

˙
ln

(
x2

1− x2

)
= a12x1 + a23x3 + (c21 + c23)

˙
ln

(
x3

1− x3

)
= a13x1 − a23x2 + (c31 + c32)

where aij = Ai,j
1,1 + Ai,j

1,1 − A
i,j
1,2 − A

i,j
2,1 for i < j, cij = Ai,j

1,2 − A
i,j
2,2 and cji = AT j,i

1,2 − ATk,i

2,2 .
Using the mapping defined above, we can do the following (assuming aij 6= 0 for all i, j,
with similar reasoning provided in Theorem 5). Eliminating the term with x3 in the first
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two equations, we get

a13ż2 − a23ż1 = a12
(
a13x1 − a23x2

)
+ a13(c21 + c23)− a23(c12 + c13)

= a12ż3 + a13(c21 + c23)− a23(c12 + c13)− a12(c31 + c32)

Thus,

a13ż2 − a12ż3 − a23ż1 = K

where,

K = a13 (c21 + c23)− a23 (c12 + c13)− a12 (c31 + c32)

Finally, integrating with respect to time from t = 0 to any generic point in time t, we get
the following equation:

a13z2 − a23z1 − a12z3 = Kt+ C0 (9)

If K > 0, the right hand side of the above equation tends to infinite as t → ∞ and
this implies the magnitude of at least one of the zi must approach infinity, which implies
xi → 0 or xi → 1. This implies that the dynamics converge to the boundary. A similar
argument follows for K < 0. Now when K = 0, the above equation is the plane given by:

a13z2 − a23z1 − a12z3 = C0 (10)

Hence, any trajectory starting in the interior is forced to lie in this plane. Through
Poincare-Bendixon theorem, we know that the only possible limiting trajectories are
limit cycles, period orbits or convergence to fixed points.

Corollary 8. If the trajectories associated with the 3-player pairwise bimatrix symmetric
(c-c-z) game accommodates periodic orbits in the interior of the state space then there
exists a Nash equilibrium in the interior of the state space.

Proof The fully mixed Nash equilibrium of the system, correspond to the equilbria of
the replicator dynamics which lie in the interior. These are characterized by the system
of linear equations as follows:

(a12)x2 + (a13)x3 = −(c12 + c13) (11)

(a12)x1 + (a23)x3 = −(c21 + c23) (12)

(a13)x1 + (−a23)x2 = −(c31 + c32) (13)

Eliminating x3 from the first two equations we get the following equation:

a12a13x1 − a12a23x2 = (c21 + c23)a13 − (c12 + c13)a23 (14)

Adding the above equation to (−a12) times (a13)x2 + (−a23)x3 = −(c31 + c32), we
get the left hand side of this to be 0 and the right hand side boils down to K =
a13 (c21 + c23) − a23 (c12 + c13) − a12 (c31 + c32), as defined previously. In addition, from
the previous theorem we see that when K 6= 0 the limiting behavior is forced to go to the
boundary of the state space. Hence if the there is a periodic orbit in the interior then K
should be equal to 0. But as seen above, if K = 0 the system of linear equations will then
have infinite solutions which implies the existence of a Nash equilibirum in the interior
of the state space.
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(a)MPC
1,2 (1,−1,−1, 1),MPC

1,3 (1,−1,−1, 1),5∗
MPZ

2,3 (1,−1,−1, 1)
(b)MPC

1,2 (1,−1,−1, 1),MPC
1,3 (1,−1,−1, 1),5∗

MPZ
2,3 (1.1,−1,−1, 1)

Figure 3: Plots of trajectories in the (c-c-z) game, with a normal and perturbed payoff
on the zero-sum edge.

(a)MPC
1,2 (1,−1,−1, 1),MPC

1,3 (1,−1,−1, 1),MPZ
2,3 (1,−1,−1, 1)

Figure 4: Plots of trajectories in the (c-c-z) game, converging to fixed points on the
boundary.

3.4 C-C-C Game

The fully coordinated game, is not a special case of the more general zero-coordination-
zero bipartite game and hence we have to resort to other methods to perform the global
analysis in this case. One such result is proved in Kleinberg et al. (2009) for congestion
games. We look at the social welfare of this system and prove that it serves as a Lyapunov
(Potential) function for the system.

Theorem 9. The social welfare of the system SW =
∑

i ui is a Lyapunov function. The
dynamics converge to equilibria.
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Proof Let us consider the derivative of SW

˙SW =
∑
i

∑
R∈Si

∂SW

∂xiR
ẋiR

=
∑
i

∑
R∈Si

ui(R)xiR

(
ui(R)−

∑
R′

ui(R
′)xiR′

)

=
∑
i

∑
R∈Si

ui(R)xiR

(∑
R′

ui(R)xiR′ −
∑
R′

ui(R
′)xiR′

)
=
∑
i

∑
R∈Si

xiR
∑
R′

xiR′
(
u2i (R)− ui(R)ui(R

′)
)

=
∑
i

∑
R∈Si

∑
R′∈Si

xiRxiR′
(
u2i (R)− ui(R)ui(R

′)
)

=
∑
i

∑
R<R′∈Si

xiRxiR′
(
u2i (R) + u2i (R

′)− 2ui(R)ui(R
′)
)

=
∑
i

∑
R<R′∈Si

xiRxiR′ (ui(R)− ui(R′))2

The last step is making use of the fact that each player is playing a coordination game
and hence the utilities are the same for the same strategy, and hence they can be grouped
into the square terms. This means that the social welfare of the system always increases
with time and hence serves as a Lyapunov function. This easily implies that the system
converges to an equilibrium.

By Kleinberg et al. (2009) it is known that in potential games generically only pure
Nash equilibria are stable and thus the system typically converges to a pure Nash equi-
librium as seen in the experiments.
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(a)MPC
1,2 (1,−1,−1, 1),MPC

1,3 (1,−1,−1, 1),5∗
MPC

2,3 (1,−1,−1, 1)

Figure 5: Plots of trajectories in (c-c-c) game.

3.5 Z-Z-C Game

The z-z-c game is not a special case of any of the above games seen before and as
such no reduction is possible, akin to the (z-z-z) and the (c-c-z) games. Moreover,
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the behavior of this system is more complicated than the pure coordination game and
does not always converge to equilibria. This is expected due to the presence of zero-sum
edges. We present some simulation results for the (z-z-c) game below and try to study
the dynamics experimentally.

(a)MPZ
1,2 (1,−1,−1, 1),MPZ

1,3 (1,−1,−1, 1),0.2∗
MPC

2,3 (1,−1,−1, 1)

0
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0.4

1

p
3
-s
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0.6

0.6 0.8

p2-s1

0.8

0.6

p1-s1

0.4

1

0.4
0.2

0.2

0 0

(b)MPZ
1,2 (1,−1,−1, 1),MPZ

1,3 (1,−1,−1, 1),5∗
MPC

2,3 (1,−1,−1, 1)

Figure 6: Plots of trajectories in the (z-z-c) game, showing cases with convergence to
fixed points and limit cycle.

4 Discussion of Results

We discuss some of the simulation results in detail here.

4.1 z-z-z games

The fully zero-sum games in figure 2 exhibit periodic orbits in the interior for different
interior starting points (shown as red points). Moreover, the time average of the system
trajectories (shown as green markers), that lie completely in the interior coincide with line
of equilibria (shown in black). This is a useful characterization of the average behavior
of the system in terms of the Nash equilibria. The exception to the above rule is the case
when one of the zero-sum games is MPZ

2,3 (1.1,−1,−1, 1) and this slight perturbation
causes the system to converge to the boundary at an exponential rate, as we had shown
while deriving the reduction for the (z-z-z) game. Due to the payoff asymmetry we have,
K 6= 0 and hence there are no interior Nash equilibria.

4.2 c-c-z games

The plots in the (c-c-z) game were obtained by keeping the coordination games the
same for all the cases and varying the extent of the zero-sum game by changing its payoffs.
In figure 3, we observe that with the particular set of game parameters, the system exhibits
behavior that is very much similar to a fully zero-sum game, including the fact that it is
not robust to perturbations in the payoff matrix, which causes the system to converge to
the boundary. However, by increasing the payoffs in the coordination game, we see that
the system converges to the vertices (just like in a full coordination game).

13



4.3 c-c-c games

The results of the (c-c-c) game are in line with the fact that they are potential games
and hence the Lyapunov function which is the social welfare of the system increases
along the trajectory of the system. Convergence to the boundary (vertices), can be seen
in figure 5. A similar behavior was observed for other changes in the parameters of one
of the coordination game payoffs.

4.4 z-z-c games

Finally, the case of (z-z-c) we show experimentally that it can exhibit limit behavior
that is not observed in any of other settings including boundary limit cycles where the two
agents who are coordinating and the single agent who is playing two zero-sum games, take
turns best responding simultaneously to each other. In this case, x1 gets arbitrarily close
to 0 or 1 and has to cycle because it is playing a zero-sum game against two coordinating
players, hence, it can be seen that x2 and x3 move along x2 = x3 line. Furthermore,
increasing the strength of the coordination game, results in the breaking of this limit
cycle and then attains convergence.

4.5 Related Work

The fact that equilibria do not suffice to understand the behavior of replicator dy-
namics even in simple games dates at least back to the work of Eshel and Akin Eshel and
Akin (1983) where they established the instability of mixed Nash equilibria for replicator
dynamics in (single-population) games; for a detailed discussion, see Hofbauer and Sig-
mund (1998). The existence of constant of motions for the replicator dynamics allowed
the characterization of certain classes of (two-player symmetric random-matching) games
as Hamiltonian systems (i.e. as dynamics possessing a Hamiltonian function that foliates
the space of population states into invariant manifolds) Hofbauer (1996). Piliouras and
Shamma Piliouras and Shamma (2014) were the first to establish Poincaré recurrence
for (network) zero-sum games in the context of replicator dynamics. These results have
recently been generalized to more expanded classes of games Piliouras et al. (2014) and
dynamics including follow-the-regularized leader dynamics Mertikopoulos et al. (2017).
Finally, current work extends such Poincaré recurrence results even in the case of time-
evolving Rock-Paper-Scissors games where the exact parameters of the game are a func-
tion of the state of the game Mai et al. (2017). None of these results can establish
periodicity, which is a much stronger recurrence property and requires specialized argu-
ments. Our focus on this paper is on continuous-time systems. The dynamics of discrete
time multi-agent systems (e.g. Multiplicative Weights Dynamics) in contrast can be
chaotic even in simple symmetric two by two games Palaiopanos et al. (2017). The role
of relationship triangles, such as “the friend of my friend is my friend” and “the enemy of
my friend is my enemy” has been studied in evolutionary models of structural changes in
networks by Jon Kleinberg and colleagues Marvel et al. (2011). More recently, the evo-
lution of beliefs has been studied in such signed networks where a plus sign corresponds
to friends and a minus sign corresponds to enemies Shi et al. (2016). The evolution of
selfish behavior within such triangles has not been studied before as far as we know.
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5 Conclusion

In this paper, we analyze the behavior of replicator dynamics, arguably the most
well known evolutionary dynamics, in three player polymatrix (triangle) games where
each edge game is either a two-by-two zero sum or coordination game. These settings
encode triadic friend-or-foe interactions. Relationship triangles Marvel et al. (2011) is a
basic building block of social networks and are thus a natural setting on which to study
multi-agent learning behavior. From the perspective of dynamical systems since these
systems are nonlinear and have three independent variables chaotic behavior is possible.
Nevertheless, no such behavior is observed with the systems either converging to equi-
libria, to limit cycles or are periodic. Given that four dimensional replicator systems
can exhibit chaos Skyrms (1992) triangle friend-or-foe games are shown to lie on a sweet
spot between complexity and simplicity. They allow for complex but predictable inter-
actions. This might be an indicator of the practical importance of relationship triangles
for social networks as they allow for richer social dynamics that are still manageable and
interpretable.
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