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Abstract

It is well understood that decentralized systems can,
through network interactions, give rise to complex be-
havior patterns that do not reflect their equilibrium
properties. The challenge of any analytic investigation
is to identify and characterize persistent properties de-
spite the inherent irregularities of such systems and to
do so efficiently. We develop a novel framework to ad-
dress this challenge.

Our setting focuses on evolutionary dynamics in
network extensions of zero-sum games. Such dynam-
ics have been shown analytically to exhibit chaotic be-
havior which traditionally has been thought of as an
overwhelming obstacle to algorithmic inquiry. We cir-
cumvent these issues as follows: First, we combine
ideas from dynamical systems and game theory to pro-
duce topological characterizations of system trajecto-
ries. Trajectories capture the time evolution of the sys-
tem given an initial starting state. They are complex,
and do not necessarily converge to limit points or even
limit cycles. We provide tractable approximations of
such limit sets. These relaxed descriptions involve sim-
plices, and can be computed in polynomial time. Next,
we apply standard optimization techniques to compute
extremal values of system features (e.g. expected util-
ity of an agent) within these relaxations. Finally, we
use information theoretic conservation laws along with
Poincaré recurrence theory to argue about tightness and
optimality of our relaxation techniques.
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1 Introduction

Complex networks are increasingly integrated in the
very fabric of our society. As much as these networks
bring people together and facilitate cooperation, they
also give rise to unexpected behavior patterns. Over
the last decade, the prevalence of such issues has risen
dramatically following a number of paradigm-shifting
events such as the meteoric rise of the Internet as a social
networking tool, the painful realization of the extent
of inter-connectivity of the global economy as well as
the necessity of international cooperation for addressing
global sustainability concerns.

Within computer science, algorithmic game theory
has been developed in an effort to provide a quantita-
tive lens for studying such systems. With classic game
theory as a guiding beacon, Nash equilibrium analysis
quickly became the de facto solution standard. Despite
its prominent role, this direction has been the subject
of much criticism. In games with multiple equilibria,
it is unclear how agents are expected to coordinate on
one. Furthermore, identifying a single Nash equilibrium
may involve unreasonable expectations on agent com-
munication and computation. Finally, natural adaptive
play does not converge to Nash equilibria in general
games. In fact, there exist games with constant number
of agents and strategies in which natural learning dy-
namics converge to limit cycles of optimal social welfare
which can be arbitrarily better than the social welfare
of the best equilibrum [23, 25].

Equilibrium analysis has emerged pretty much un-
scathed from these remarks. To counter this disconnect
between the proposed equilibrium methodology and the
usually more intricate system behavior, proponents of
the equilibrium approach rightfully point out that equi-
librium analysis already raises significant analytical hur-
dles. Once we move past the safe haven of Nash equi-



libria, which capture (possibly unstable) fixed points of
learning dynamics, the topological waters become deep
and turbulent fast. Indeed, in [29] Sato etal. make this
argument rather convincingly by showing that even sim-
ple zero-sum games (perturbed versions of Rock-Paper-
Scissors) suffice to give rise to chaotic behavior under
classic evolutionary dynamics. Specifically, they an-
alytically verify high sensitivity of system trajectories
to initial conditions and provide experimental evidence
of dense interweaving between quasi-periodic tori and
chaotic orbits.

A cursory glance at the rate of progress of theoret-
ical work on disequilibrium dynamics is rather telling
about the complexities involved. Soon after Nash for-
malized his ideas about equilibrium, Shapley [31] es-
tablished that simple learning dynamics do not con-
verge to equilibrium. The game in question is a two
agent non-zero sum variant of Rock-Paper-Scissors. Fol-
lowup work by Jordan[21] established analogous results
for three agent games. These results have been revis-
ited and reestablished via different routes [14]. Within
computer science recent work about non-convergence of
learning dynamics in games focuses on variants of these
games and dynamics [8, 23, 3]. The unified characteris-
tics of all these works, which are already present in the
work of Shapley, are that the networks are of constant
size, the dimension of the action space is constant, and
that the disequilibrium behavior is as simple as possi-
ble. Specifically, the dynamics exhibit a single polygon-
shaped cyclic attractor with a constant number of ver-
tices. These attractors are usually referred to as Shapley
polygons.

Another key common characteristic of this prior
work is that it is largely qualitative in nature. The
goal is to present a simple and easy to convey message.
Given that chaotic phenomena can arise even in simple
examples, researchers traverse a fine line of identifying
classes of games whose hardness is exactly right. The
settings must be simple enough so that the true system
behavior can be expressed concisely and with perfect
precision, and rich enough so that the resulting picture
diverges significantly from that of standard equilibrium
analysis.

Such approaches are undoubtedly useful in terms of
cultivating a collective mindset about the importance
of meeting these analytical challenges fully. However, if
nonequilibrium analysis hopes to graduate to the level
of a concrete and actionable scientific framework one
needs to show how progress in this area can translate
to novel algorithmic insights. How can one compute, or
even efficiently encode, regularities in an ever transient
complex environment? We hope to shed some light
along this direction.

Our results We study an evolutionary class of dynam-
ics, the replicator equation, in a network generaliza-
tion of constant-sum games known as separable zero-
sum multiplayer games. These are polymatrix graphi-
cal games where the sum of all agents’ payoffs is always
equal to zero. This setting incorporates both the com-
plexity of chaotic trajectories as well as computational
intricacies that arise from its combinatorial structure.
Specifically, we present the first to our knowledge anal-
ysis of nonequilibrium dynamics for a class of games
of arbitrary dimension (number of agents, number of
strategies).

We introduce formal notions of persistent properties
for nonconverging dynamics. Roughly speaking, a sub-
space of the state space defines a persistent property if
for all initial conditions systems trajectories eventually
move away from the complement of the subspace and
never return to it. Arguing about persistent properties
requires topological characterizations of system trajec-
tories. In generic (network) zero-sum games no trajec-
tory converges to equilibrium. We combine elements
from theory of dynamical systems, game theory and on-
line learning theory to show that the limit sets of all
starting points lie within a specific subspace. This sub-
space is a product of simplices and expresses the set of
all mixed strategy profiles whose support matches that
of the Nash equilibrium of maximum support. Further-
more, we utilize an information theoretic conservation
law to extend Poincaré recurrence theory to our setting
and argue about the optimality of the relaxation.

In the second part of the paper we show how we can
combine these topological characterizations with algo-
rithmic tools to make tight predictions about the pos-
sible range of values of interesting system features. We
start by extending ideas from algorithmic game theory
to show that we can compute these simplex-based re-
laxed descriptions efficiently. Next, we show that solv-
ing optimization problems over such relaxed subsets suf-
fices to track extremal recurrent value problems for con-
tinuous features of the state space (e.g. expected utility
of an agent). Finally, we discuss some concrete appli-
cations of our framework towards identifying margins
of survival as well as optimal performance measures for
competing companies in networked economies.

A benchmark example: Rock-Paper-Scissors
Let’s consider the benchmark case of the Rock-Paper
Scissors game in order to convey some concrete insights.
A key observation is that starting from any (interior)
starting point the sum of the K-L divergences between
the unique fully mixed Nash equilibrium strategy of
each agent and her evolving strategy remains constant
as the system moves forward in time. A useful fact to
keep in mind is that K-L divergence can be thought



of as a (pseudo)-metric.1 The fact that this pseudo-
distance between the Nash equilibrium and the evolving
system state remains constant is useful. Intuitively,
it implies that the replicator dynamics starting from
a fully mixed state will: a) not converge to the Nash
equilibrium (K-L divergence cannot drop to zero); b)
will not come arbitrarily close to the boundary (K-L
divergence cannot blow up to infinity). In fact, for any
two initial conditions (mixed strategy profiles) x and
y with distinct initial K-L divergences from the Nash
equilibrium the corresponding limit behavior must be
distinct. This richness in limit behavior (with infinitely
many different possible limit behaviors) comes at a
contrast with the established intuition about zero-sum
games having a unique behavioral “solution”.

Figure 1: Sample orbits of replicator dynamics in Rock-
Paper-Scissors (row agent’s mixed strategy)

More to the point, our analysis implies that given
any open set of initial conditions that is bounded away
from the boundary there exist replicator trajectories
that revisit this set infinitely often. Before we examine
how one could prove such a statement, let’s examine
why such a statement is useful. Let’s imagine an outside
observer that makes a measurement of a continuous
observable feature2 every time this trajectory “hits” the

1The K-L divergence between two distributions is non-negative
and it is equal zero if and only if the two distributions match. It
is also finite for any two distributions with the same support.

2For now, think of a feature as a function from the state space
to the real line.

open set. If we define the open set as an (open) ball
of radius δ > 0, then for any ϵ > 0 we can choose
such a δ > 0 such that any two such measurements are
within an ϵ of each other. For all practical purposes
these observations become indistinguishable for small
enough ϵ, δ. Since these (range of) values can be
revisited infinitely often (for properly chosen initial
conditions) a predictive statement that holds regardless
of initial conditions must account for them. Using
properly chosen open balls of initial conditions we
can approximate any value of a continuous feature
(anywhere on the state space) within an error of ϵ for
any ϵ > 0. Therefore, without explicit knowledge of
initial conditions, the only closed set of predictions that
we can make for any continuous feature is the trivial one,
i.e., the set that includes all possible range of values. So,
not only is the unique Nash equilibrium not predictive of
the actual day-to-day agent behavior (or any continuous
observable feature of it) but from an optimization point-
of-view no nontrivial prediction can be made!

This recurrence of observed values would be im-
mediately true if all trajectories where either fixed
points (i.e. Nash equilibria) or formed limit cycles,
that is, if they looped perfectly into themselves. Un-
fortunately, this concise characterization is not true
even for separable zero-sum games with a unique fully
mixed Nash equilibrium3. We need to apply a more re-
laxed and powerful notion of recurrence that dates back
to Poincaré and his celebrated 1890’s memoir on the
three body problem [28]. Poincaré’s recurrence theo-
rem states that the trajectories of certain systems re-
turn arbitrarily close to their initial position and that
they do this an infinite number of times. Combining
the fact that in Rock-Paper-Scissors given any initial
fully mixed strategy the system state stays away from
boundary along with other technical properties of the
replicator dynamic, we show how to extend the impli-
cations of this theorem to our setting and prove recur-
rence of open sets. Specifically, we establish topological
conjugacies, which is a powerful notion of equivalence
for flows, between replicator flows and specific classes
of conservative systems for which Poincaré’s recurrence
theorem is known to apply.

Related Work Persistent cyclic or chaotic patterns
are a ubiquitous reality of natural systems. Research on
the intersection of mathematical ecology and dynamical
systems dating back to the 70’s[10, 11, 13, 16] has
developed a wide range of tools for addressing the
following question: Given a dynamical system capturing

3Such an example is a setting consisting of two independent
copies of matching pennies where the utilities in one of the games

have been scaled up by an irrational number.



the interaction of different species in a population is it
true that all species will survive in the long run? In our
work we apply these tools towards understanding other
abstract properties of our state space. More extended
surveys of results in the area can be found here[20, 18].

Our work was inspired by recent insights on net-
work generalizations of zero-sum games[9, 6]. Their
approach is mostly focused on the properties of Nash
equilibria. Nash equilibrium computation is shown to
be tractable. Furthermore, the set of Nash equilibria is
convex. Lastly, the time-average of no-regret dynamics
converges weakly to the set of Nash equilibria. On the
contrary our work focuses on the “day-to-day” prop-
erties of the trajectories of the replicator dynamic, an
explicit regret-minimizing dynamic.

In terms of analyzing replicator dynamics in set-
tings of interest, the work of Kleinberg, Piliouras and
Tardos[24] show how replicator when applied to generic
potential games leads to the collapse of the randomiza-
tion of an initial generic state. The story we are pre-
senting here is essentially the dual of that in potential
games. Replicator dynamics leads to the preservation of
as much of the initial randomness of the system as pos-
sible. Our tools for analyzing replicator dynamics build
upon the work of Akin and Losert[1] on symmetric zero-
sum games without however following in the footsteps
of their symplectic forms approach. The other major
influence to our work has come from the work of Hof-
bauer, who amongst other contributions in the area was
the first to offer formal connections between replicator
dynamics and conservative systems via smooth invert-
ible mappings[17, 18].

2 Preliminaries

In this section, we introduce the necessary concepts
and notions that will enable us to express our points
formally. Several of the concepts such as the replicator
dynamic and the overview of dynamical systems theory
are classic, however, other ones such as that of feature,
property and persistent property are novel.

2.1 Separable zero-sum multiplayer game A
graphical polymatrix game is defined via an undirected
graph G = (V, E), where V corresponds to the set of
agents of the game and where every edge corresponds
to a bimatrix game between its two endpoints/agents.
We denote by Si the set of strategies of agent i. We de-
note the bimatrix game on edge (i, k) ∈ E via a pair of
payoff matrices: Ai,k of dimension |Si|×|Sk| and Ak,i of
dimension |Sk|× |Si|. Let s ∈ ×iSi be a strategy profile
of the game. We denote by si ∈ Si the respective strat-
egy of agent i. Similarly, we denote by s−i ∈ ×j∈V \iSj

the strategies of the other agents. The payoff of agent

i ∈ V in strategy profile s is equal to the sum of the pay-
offs that agent i receives from all the bimatrix games she
participates in. Specifically, ui(s) =

∑
(i,k)∈E Ai,k

si,sk
.

A randomized strategy x for agent i lies on the
simplex ∆(Si) = {p ∈ �|Si|

+ :
∑

i pi = 1}. A randomized
strategy x is said to be fully mixed if it lies in the
interior of the simplex, i.e. if xi > 0 for all strategies
i ∈ Si. Payoff functions are extended to randomized
strategies in the usual multilinear fashion. A (mixed)
Nash equilibrium is a profile of mixed strategies such
that no agent can improve her (expected) payoff by
unilaterally deviating to another strategy.

Definition 2.1. (Separable zero-sum multiplayer
games) [6] A separable zero-sum multiplayer game GG
is a graphical polymatrix game in which, for any pure
strategy profile, the sum of all players’ payoffs is zero.
Formally, ∀s ∈ ×iSi,

∑
i ui(s) = 0.

Zero-sum games trivially have this property. Any
graphical games in which every edge is a zero-sum game
also belongs to this class. These games are referred to
as pairwise zero-sum polymatrix games [9]. If the edges
are allowed to be arbitrary constant-sum games then the
corresponding games are called pairwise constant-sum
polymatrix games. There exists [6] a (polynomial-time
computable) payoff preserving transformation from ev-
ery separable zero-sum multiplayer game to a pairwise
constant-sum polymatrix game (i.e., a game played on a
graph with agents on the nodes and two-agent games on
each edge such for each i, k ∈ V : Ak,i = c{k,i}1 − AT

i,k

and 1 the all-one matrix). We will use this representa-
tion in the rest of the paper.

2.2 Replicator Dynamics The replicator equation
is among the basic tools in mathematical ecology, genet-
ics, and mathematical theory of selection and evolution.
In its classic continuous form, it is described by the fol-
lowing differential equation:

ẋi , dxi(t)
dt

= xi[ui(x) − û(x)], û(x) =
n∑

i=1

xiui(x)

where xi is the proportion of type i in the population,
x = (x1, . . . , xm) is the vector of the distribution of
types in the population, ui(x) is the fitness of type
i, and û(x) is the average population fitness. The
state vector x can also be interpreted as a randomized
strategy of an adaptive agent that learns to optimize
over its m possible actions given an online stream of
payoff vectors. The right hand-size of the replicator
equation defines a continuously differentiable function
defined on (the interior) of the associated simplex. This



function is referred to as the vector field ξ. Since the
replicator allows to associate stream of payoff vectors to
mixed strategies, it can be employed in any distributed
optimization setting by having each agent update her
strategy according to it. A fixed point of the replicator is
a point where its vector field is equal to the zero vector.
Such points are stationary, i.e., if the system starts off
from such a point it stays there. An interior point of the
state space is a fixed point for the replicator if and only
if it is a fully mixed Nash equilibrium of the game. The
interior (the boundary) of the state space ×i∆(Si) are
invariants for the replicator. We typically analyze the
behavior of the replicator from a generic interior point,
since points of the boundary can be captured as interior
points of lower dimensional systems. Summing all this
up, our model is captured by the following system:

ẋiR = xiR

(
ui(R) −

∑
R′∈Si

xiR′ui(R′)
)

for each agent i ∈ N , action R ∈ Si, and where we
define ui(R) = Es−i∼x−i

ui(R, s−i).
The replicator dynamic enjoys numerous desirable

properties such as universal consistency (no-regret)[12,
19], connections to the principle of minimum discrimi-
nation information (Occam’s rajor, Bayesian updating),
disequilibrium thermodynamics[22, 30], classic models
of ecological growth (e.g. Lotka-Volterra equations[18]),
as well as several well studied discrete time learning al-
gorithms (e.g. Multiplicative Weights algorithm[24, 2]).

2.3 Topology of dynamical systems In an effort
to make our work as standalone as possible we provide a
quick introduction to the main ideas in the topology of
dynamical systems. Our treatment follows that of [32],
the standard text in evolutionary game theory, which
itself borrows material from the classic book by Bhatia
and Szegö[5].

Since our state space is compact and the replicator
vector field is Lipschitz-continuous, we can present the
unique solution of our ordinary differential equation as
a continuous map Φ : S × � → S called flow of the
system. Fixing starting point x ∈ S defines a function
of time which captures the trajectory (orbit, solution
path) of the system with the given starting point. This
corresponds to the graph of Φ(x, ·) : �→ S, i.e., the set
{(t, y) : y = Φ(x, t) for some t ∈ �}. In simple terms,
the trajectory captures the evolution of the state of a
system given an initial starting point. On the other
hand, by fixing time t, we obtain a map of the state
space to itself Φt : S → S. The resulting family of
mappings exhibits the standard group properties such as
identity (Φ0) and existence of inverse (Φ−t), and closure
under composition Φt1 ◦ Φt2 = Φt1+t2 .

If the starting point x does not correspond to an
equilibrium, then we wish to capture the asymptotic
behavior of the system (informally the limit of Φ(x, t)
when t goes to infinity). Typically, however, such
functions do not exhibit a unique limit point so instead
we study the set of limits of all possible convergent
subsequences. Formally, given a dynamical system
(�,S,Φ) with flow Φ : S ×�→ S and a starting point
x ∈ S, we call point y ∈ S an ω-limit point of the
orbit through x if there exists a sequence (tn)n∈N ∈ �
such that limn→∞ tn = ∞, limn→∞ Φ(x, tn) = y.
Alternatively the ω-limit set can be defined as: ωΦ(x) =
∩t∪τ≥tΦ(x, τ).

Finally, the boundary of a subset S is the set of
points in the closure of S, not belonging to the interior
of S. Generally, given a subset S of a metric space with
metric dist, then x is an interior point of S if there exists
r > 0, such that y is in S whenever the dist(x, y) < r.
In the typical case of a Euclidean space, then simply x is
an interior point if there exists an open set centered at
it which is contained in S. An element of the boundary
of S is called a boundary point of S. We denote the
boundary of a set S as bd(S) and the interior of S as
int(S). In the case of the replicator dynamics where the
state space S corresponds to a product of agent (mixed)
strategies we will denote by Φi(x, t) the projection of the
state on the simplex of mixed strategies of agent i.

Liouville’s Formula Liouville’s formula can be ap-
plied to any system of autonomous differential equa-
tions with a continuously differentiable vector field ξ
on an open domain of S ⊂ �k. The divergence of ξ
at x ∈ S is defined as the trace of the corresponding
Jacobian at x, i.e., div[ξ(x)] =

∑k
i=1

∂ξi

∂xi
(x). Since di-

vergence is a continuous function we can compute its
integral over measurable sets A ⊂ S. Given any such
set A, let A(t) = {Φ(x0, t) : x0 ∈ A} be the image of A
under map Φ at time t. A(t) is measurable and is vol-
ume is vol[A(t)] =

∫
A(t)

dx. Liouville’s formula states
that the time derivative of the volume A(t) exists and
is equal to the integral of the divergence over A(t):

d

dt
[A(t)] =

∫
A(t)

div[ξ(x)]dx.

A vector field is called divergence free if its diver-
gence is zero everywhere. Liouville’s formula trivially
implies that volume is preserved in such flows.

Poincaré’s recurrence theorem The notion of re-
currence that we will be using in this paper goes back
to Poincaré and specifically to his study of the three-
body problem. In 1890, in his celebrated work[28], he
proved that whenever a dynamical system preserves vol-



ume almost all trajectories return arbitrarily close to
their initial position, and they do so an infinite num-
ber of times. More precisely, Poincaré established the
following:

Theorem 2.1. [28, 4] If a flow preserves volume and
has only bounded orbits then for each open set there exist
orbits that intersect the set infinitely often.

Homeomorphisms, Diffeomorphisms and Conju-
gacy of Flows A function f between two topological
spaces is called a homeomorphism if it has the following
properties: f is a bijection, f is continuous, and f has
a continuous inverse. A function f between two topo-
logical spaces is called a diffeomorphism if it has the
following properties: f is a bijection, f is continuously
differentiable, and f has a continuously differentiable
inverse.

Definition 2.2. (Topological conjugacy) Two flows
Φt : A → A and Ψt : B → B are conjugate if there
exists a homeomorphism g : A → B such that for each
x ∈ A and t ∈ �:

g(Φt(x)) = Ψt(g(x)).

Furthermore, two flows Φt : A → A and Ψt : B →
B are diffeomorhpic if there exists a diffeomorphism
g : A → B such that for each x ∈ A and t ∈ �
g(Φt(x)) = Ψt(g(x)). If two flows are diffeomorphic,
then their vector fields are related by the derivative of
the conjugacy. That is, we get precisely the same result
that we would have obtained if we simply transformed
the coordinates in their differential equations [26].

2.4 Feature and Property Generally, let Σ denote
a system with a state space S whose temporal evolution
is captured by the flow Φ : S × � → S. We define an
(observable) feature of Σ as a map F : S → O from S
to (a possibly different) observation space O. For our
system, where S corresponds to the product of mixed
strategies of the agents ×i∆(Si), typical examples of
observable features are the (mixed) strategy or the
(expected) utility of an agent.

The temporal evolution of system Σ induces orbits
on the observation space Ψ = F ◦ Φ : S × � → O that
encode all possible systematic interactions between the
system and the F-observer. A systematic analysis of
feature F in Σ now translates to identifying regularities
over all possible orbits of Ψ. Given feature F : S → O,
we will denote as property Γ ⊂ O an open subset4 that
encodes a desirable parameter range for that specific
feature.

4We will assume that all spaces including O are compact metric
spaces.

2.5 Persistence The notions of persistence that we
pursue here are inspired by more restricted notions
of population persistence developed within the field of
mathematical ecology[[18, 20] and references therein].

Definition 2.3. Given feature F : S → O, let property
Γ ⊂ O be an open subset that encodes a desirable feature
range. We state that property Γ is persistent for feature
F if for all initial conditions x ∈ int(S),we have that

lim inf
t→∞

dist(F
(
Φ(x, t)

)
, O\Γ) > 0.

Furthermore, if ∃ ϵ > 0 such that ∀x ∈ int(S),we have
that

lim inf
t→∞

dist(F
(
Φ(x, t)

)
, O\Γ) > ϵ

then we state that property Γ is uniformly persistent for
feature F .

These notions encode self-enforcing system regular-
ities. That is, regardless of the starting state of the
system, even if we start from states that do not satisfy
a persistent property, such properties will eventually be-
come true for the system and persist being true for all
time. The typical way of enforcing regularities of simi-
lar form in a multi-agent system is to assume that the
system state will converge to (a subset of) Nash equilib-
ria and show that this property is satisfied for all such
limit points. However, the notion of persistence prop-
erty is stronger than these statements. For example,
a property that is only true exactly at a Nash equilib-
rium may never be satisfied even if the system converges
asymptotically to the equilibrium. On the contrary, a
persistent property will eventually be satisfied. The def-
inition of uniform persistence is even stronger and es-
sentially states that the persistence of the property can
be verified even via measurements of finite accuracy.

The are two observation spaces O of particular
importance. One is the state space itself S in the
case where F is the identity function. In this case, by
identifying persistent properties Γ ⊂ S we essentially
gain information about the topology of the ω-limit
points of system trajectories. Nash equilibria trivially
belong to this set for all dynamics that are Nash
stationary (as the replicator). However, as we will see
these sets can be significantly larger.

The other special case is when the observation
space O is the real line �. This is of particu-
lar importance because it allows us to forge con-
nections to standard optimization theory. In this
case, we will simply say that F is [m,M]-persistent
if we have that: infx∈int(S) lim inft→∞ F

(
Φ(x, t)

)
≥

m and supx∈int(S) lim supt→∞ F
(
Φ(x, t)

)
≤ M.



2.6 Information Theory Entropy is a measure of
the uncertainty of a random variable and captures
the expected information value from a measurement
of the random variable. The entropy H of a discrete
random variable X with possible values {1, . . . , n} and
probability mass function p(X) is defined as H(X) =
−

∑n
i=1 p(i) ln p(i).
Given two probability distributions p and q of a

discrete random variable their K-L divergence (relative
entropy) is defined as DKL(p∥q) =

∑
i ln

(
p(i)
q(i)

)
p(i).

It is the average of the logarithmic difference between
the probabilities p and q, where the average is taken
using the probabilities p. The K-L divergence is only
defined if q(i) = 0 implies p(i) = 0 for all i5. K-L
divergence is a ”pseudo-metric” in the sense that for it
is always non-negative and is equal to zero if and only
if the two distributions are equal (almost everywhere).
Other useful properties of the K-L divergence is that it
is additive for independent distributions and that it is
jointly convex in both of its arguments; that is, if (p1, q1)
and (p2, q2) are two pairs of distributions then for any
0 ≤ λ ≤ 1: DKL(λp1 + (1 − λ)p2∥λq1 + (1 − λ)q2) ≤
λDKL(p1, q1) + (1 − λ)DKL(p2, q2).

A closely related concept is that of the cross entropy
between two probability distributions, which measures
the average number of bits needed to identify an event
from a set of possibilities, if a coding scheme is used
based on a given probability distribution q, rather
than the “true” distribution p. Formally, the cross
entropy for two distributions p and q over the same
probability space is defined as follows: H(p, q) =
−

∑n
i=1 p(i) ln q(i) = H(p)+DKL(p∥q). For more details

and proofs of these basic facts the reader should refer
to the classic text by Cover and Thomas [7].

3 Topology of Persistence Properties

We will start our analysis by examining the set of
(uniformly) persistent properties of system trajecto-
ries. Here, we will assume that the observer F has
full access to the realized state of the system at each
time instance. In other words, the observation func-
tion F , defined on the state space of mixed strategy
outcomes ×i∆(Si), is the identity function. Specifi-
cally, the existence of any uniformly persistent prop-
erty implies at a minimum: ∃ ϵ > 0 such that ∀x ∈
int(×i∆(Si)):lim inf dist(Φ(x, t), bd(×i∆(Si))) > ϵ.

To simplify notation, when the analysis of the orbit
Φ(x0, t), does not dependent critically on the initial
starting point x0, we will denote the state at time t,
as x(t) or simply x.

5The quantity 0 ln 0 is interpreted as zero because
limx→0 x ln(x) = 0.

Theorem 3.1. Let Φ denote the flow of the replicator
dynamic when applied to a network-zero-sum game and
let the observation function F be the identity function.
If ×iint(∆(Si)) is a uniformly persistent property of the
flow then the flow has a unique interior fixed point q.

Proof. If ×iint(∆(Si)) is a uniformly persistent prop-
erty of the flow, then by definition ∃ϵ > 0 such that
∀x ∈ int(×i∆(Si)) lim inf dist(Φ(x, t), bd(×i∆(Si))) >
ϵ. If we denote as xi the vector encoding the mixed
strategy of agent i over her available actions at time t,
then on the support of x0 (i.e., everywhere) we have
that:

∫ t

0

[
ui(R) −

∑
R∈Si

xiRui(R)
]
dτ =

∫ t

0
ẋiR

xiR
dτ =

ln
( xiR(t)

xiR(0)

)
. By assumption of uniform persistence we

have that for each agent i and strategy R ∈ Si:
lim inf xiR > ϵ for some ϵ > 0. This implies that
limt→∞

1
t ln

( xi(t)
xi(0)

)
= 0. For any pair of agent i and

strategy R, the functions 1
t

∫ t

0
xiRdτ , 1

t

∫ t

0
ui(R)dτ are

bounded. Since they are finitely many of them we can
find a common converging subsequence tn for all of
them6. Combining the last two equations and dividing
them with tn we derive for every agent i, R ∈ Si:

lim
n→∞

1
tn

∫ t

0

∑
R∈Si

xiRui(R)dτ = lim
n→∞

1
tn

∫ t

0

ui(R)dτ =

= lim
n→∞

1
tn

∫ t

0

Es−i∼x−i(τ)ui(R, s−i)dτ = ui(R, x̂−i)

where x̂iR = limn→∞
1
tn

∫ t

0
xiRdτ and the last equation

follows from the separability of payoffs. Since for all
agents i, ∀R, Q ∈ Si : ui(R, x̂−i) = ui(Q, x̂−i), x̂ is a
fully mixed Nash equilibrium.

Let’s assume that the system has two distinct
interior fixed points. These correspond to fully mixed
equilibria q1, q2. By linear separability of payoffs any
point of the state space of mixed strategy profiles that
lies on the (infinite) line connecting q1, q2 is also a fixed
point. However, this line hits the boundary and as a
result, for any ϵ > 0 we can find interior fixed points of
the system at distance less than ϵ from the boundary.
We reach a contradiction, since we have assumed that
there should exist an ϵ > 0 such that ∀x ∈ int(×i∆(Si))
we have that lim inf dist(Φ(x, t), bd(×i∆(Si))) > ϵ. �

We will show that the cross entropy between a
fully mixed Nash q and an evolving interior state∑

i

∑
R∈Si

qiR · ln(xiR) is an invariant of the dynamics.
When x, y ∈ ×i∆(Si) we will use H(x, y), DKL(x, y) to
denote respectively the

∑
i H(xi, yi),

∑
i DKL(xi, yi).

6Take a convergent subsequence of the first function and find
on this a convergence subsequence of the second and so on.



Theorem 3.2. Let Φ denote the flow of the replicator
dynamic when applied to a network-zero-sum game that
has an interior (i.e. fully mixed) Nash equilibrium q
then given any (interior) starting point x0 ∈ ×i∆(Si),
the cross entropy between q and the state of system
Φ(x0, t) is a constant of the motion, i.e., it remains
constant as we move along any system trajectory.

Otherwise, let q be a (not fully mixed) Nash equi-
librium of the game on bd(×i∆(Si)), then for each
starting point x0 ∈ ×iint(∆(Si)) for all t′ ≥ 0
dH(q,Φ(x0,t))

dt |t=t′ < 0.

Proof. The support of the state of system (e.g., the
strategies played with positive probability) is an invari-
ant of the flow, so it suffices to prove this statement for
each starting point x0 at time t = 0. We examine the
derivative of H(q, Φ(x0, t)) = −

∑
i

∑
R∈Si

qiR · ln(xiR).

∑
i

∑
R∈Si

qiR
d ln(xiR)

dt
=

∑
i

∑
R∈Si

qiR
ẋiR

xiR
=

=
∑

i

∑
(i,k)∈E

(
qT
i Ai,kxk − xT

i Ai,kxk

)
=

=
∑

i

∑
(i,k)∈E

(
qT
i − xT

i

)
Ai,kxk ≥

≥
∑

i

∑
(i,k)∈E

(
qT
i − xT

i

)
Ai,k(xk − qk) =

=
∑

E=(i,k)

[(
qT
i − xT

i

)
Ai,k(xk − qk) +

+
(
qT
k − xT

k

)
Ak,i(xi − qi)

]
= 0.

For each agent i,
∑

(i,k)∈E

(
qT
i − xT

i

)
Ai,kqk ≥ 0,

since q is a Nash equilibrium. Since the state x is fully
mixed,

∑
i

∑
(i,k)∈E

(
qT
i − xT

i

)
Ai,kqk = 0 if and only if

the Nash equilibrium q is fully mixed. �

The cross entropy between the Nash q and the state
of the system, however is equal to the summation of the
K-L divergence between these two distributions and the
entropy of q. Since the entropy of q is constant, we
derive the following corollary:

Corollary 3.1. If the flow Φ has an interior fixed
point q then given any (interior) starting point x0 ∈
×i∆(Si), the K-L divergence between q and the state of
the system is a constant of the motion.

So far, we have shown that for a system to have a
uniformly persistent property it must have a (unique)
fully mixed Nash equilibrium. Furthermore, for games
with a fully mixed Nash equilibrium the K-L divergence

(between that equilibrium and the state of the system)
remains constant. These replicator flows stay bounded
away from the boundary. In this case, we will show how
to apply Poincaré recurrence to establish the recursive
nature of the flow.

Theorem 3.3. If the flow Φ has an interior fixed point,
then for each open set E that is bounded away from
bd(×i∆(Si)) there exist orbits that intersect E infinitely
often.

Proof. Let q be the interior fixed point of the flow. By
corollary 3.1, we have established in this case, the K-L
divergence between q and the state of the system is a
constant of the motion. This implies that starting off
any interior point the system trajectory will always re-
main bounded away from the boundary7. Furthermore,
the system defined by applying replicator on the inte-
rior of state space, can be transformed to a divergence
free system on (−∞, +∞)

P

i(|Si|−1) via the following in-
vertible smooth map ziR = ln(xiR/xi0), where 0 ∈ Si a
specific (but arbitrarily chosen) strategy of agent i. This
map g : ×iint(∆(Si)) → �

P

i(|Si|−1) is clearly a home-
omorphism8. Hence, we can a establish a conjugacy
between the replicator system (restricted to the interior
of state space) and a system on (−∞, +∞)

P

i(|Si|−1)

where:

d
(

xiR

xi0

)
dt

=
ẋiRxi0 − ẋi0xiR

x2
i0

=
xiR

xi0

(
ui(R) − ui(0)

)
.

This implies that ˙ziR =
d
(

ln
xiR
xi0

)
dt = ui(R) − ui(0)

where ui(R), ui(0) depend only on the mixed strategies
of the rest of the agents (i.e. other than i). As a result,
the flow Ψt = g ◦Φt ◦ g−1, which arises from our system
via the change of variables ziR = ln(xiR/xi0), defines a
separable vector field in the sense that the evolution of
ziR, depends only on the state variables of the other
agents. The diagonal of the Jacobian of this vector
field is zero and consequently the divergence (which
corresponds to the trace of the Jacobian) is zero as well.
Liouville’s theorem states that such flows are volume
preserving. On the other hand, this transformation
blows up the volume near the boundary to infinity and
as a result does not allow for an immediate application
of Poincaré’s recurrence theorem.

7This statement follows from the fact that the K-L divergence
becomes infinite at the boundary, whereas it is finite for any

interior (starting) point.
8The reverse map is xi0 = 1

1+
P

i∈Si\{0} eziR , xiR =

eziR

1+
P

R∈Si\{0} eziR for R ∈ Si \ {0}. In fact, g is a diffeomor-

phism.



Given any open set E that is bounded away from
the boundary and let cE = supx∈E DKL(q∥x). Since
E is bounded away from the boundary cE is finite.
We focus on the restriction of flow Ψ over the closed
and bounded set9 g(SE), where SE = {x ∈ ×i∆(Si) :
DKL(q∥x) ≤ cE}. The fact that replicator preserves K-
L divergence between the equilibrium q and the state
of the system implies that replicator maps SE to itself.
Due to the homeomorphism g, the same applies for flow
Ψ and g(SE). The restriction of flow Ψ on g(SE) is a
volume preserving flow and has only bounded orbits. As
a result, we can now apply Poincaré’s theorem to derive
that for each open set of this system, there exist orbits
Ψ(z0, ·) that intersect the set infinitely often. Given
our initial arbitrary (but bounded from the boundary
of ×i∆(Si))) open set E, g(E) is also open10 and
hence infinitely recurrent for some Ψ(z0, ·) but now the
g−1(Ψ(z0, ·)) = Φ(g−1(z0), ·) visits E infinitely often,
concluding the proof. �

Combining the theorems in this section we derive
the following characterization of persistent properties.

Corollary 3.2. Φ has no uniformly persistent prop-
erty Γ ⊂ ×iint(∆(Si)). If the flow has an interior fixed
point then ×iint(∆(Si)) is a persistent property of the
system, however, any property Γ ⊂ ×i∆(Si) whose com-
plement ×i∆(Si)\Γ contains a ball of radius ϵ > 0 is not
persistent.

3.1 Systems without interior fixed points As
shown by [6], the set of Nash equilibria for separable
zero-sum games is convex. Such games exhibit a unique
maximal support of Nash equilibrium strategies.11 We
will denote by Wi ⊂ Si the support of agent’s i
mixed strategy in any of the maximum support size
equilibria. As we have argued, when there exist fully
mixed Nash equilibria the only persistent property is
the set ×iint(∆(Si)). We will show that as the size of
Wi decreases, the predictability of the system increases.

Theorem 3.4. If Φ does not have an interior fixed
point, then given any interior starting point x ∈
int(×i∆(Si)), the orbit Φ(x, ·) converges to the boundary
of the state space. Furthermore, if q is an equilibrium

9g(SE) is closed since SE is closed and g is a homeomorphism.
g(SE) is bounded since E is bounded away from the boundary of
×i∆(Si).

10Since g is a homeomorphism.
11Indeed, if there exist two equilibria of maximal support with

distinct supports, then the mixed strategy profile where each

agent chooses uniformly at random to follow his randomized
strategy in one of the two distributions is also a Nash equilibrium
and has larger support that each of the original distributions.

of maximum support with Wi the respective supports of
each agent’s strategy then ω(x) ⊂ ×iint(∆(Wi)).

In simple terms, our analysis implies that the limit
sets of systems without interior fixed points correspond
to limit sets of a collapsed subsystem which assigns
probability zero to any strategy that lies outside the
maximum equilibrium support. This allows for a unified
treatment of all replicator flows on separable zero-sum
games by focusing on the right subspace defined by the
maximal Nash equilibrium support. Furthermore, we
derive a general information theoretic principle which
implies that the limit behavior of all such flows satisfies
a universal information theoretic conservation law.

Corollary 3.3. Information Conservation in
the Limit: Let q be a Nash equilibrium of maximum
support, then the rate of change of the K-L divergence
between q and the state of the system converges to zero.

Next, we will reinterpreting these characterization
results about the system limit sets from an optimization
perspective. Specifically, we will use them to identify in
polynomial time accurate estimators about the extremal
values of different features F : ×i∆(Si) → � of the
system state.

4 Features and Optimization

The take-home message of the topological investigation
of system trajectories is that the long-run behavior of
the system is dictated by the maximum support Nash
equilibria of the separable zero-sum game. If we can
compute these maximum supports Wi for each agent i
efficiently then this defines convex subspaces over which
we can apply optimization techniques. We extend tools
from Cai and Daskalakis [6] to find these supports in
polynomial time.

Theorem 4.1. Given a separable constant-sum multi-
player game we can find a Nash equilibrium of maximum
support in polynomial time.

We will show that by performing optimization over
this product of simplices we can find the possible range
of continuous features F of our system regardless of
initial conditions.

Theorem 4.2. Let F : ×i∆(Si) → � be a continuous
feature of the state space and let Wi be the support of
agent i in a maximum support equilibrium then we have
that:

sup
x∈×iint(∆(Si))

lim sup
t→∞

F(Φ(x, t)) ≤ max
x∈×i∆(Wi)

F(x).



Proof. We will prove that for each x ∈ ×iint(∆(Si)) :
lim supt→∞ F(Φ(x, t)) ≤ maxx∈×i∆(Wi) F(x). By the-
orem 3.4 we have that given any x0 ∈ ×iint(∆(Si)) :
ω(x0) ⊂ ×iint(∆(Wi)). Let’s assume that there ex-
ists x ∈ ×iint(∆(Si)) : lim supt→∞ F(Φ(x, t)) >
maxx∈×i∆(Wi) F(x). This implies that there exists se-
quence (tn)n∈N ∈ � such that limn→∞ tn = ∞ and
limn→∞ F(Φ(x0, tn)) > maxx∈×i∆(Wi) F(x). There-
fore, this sequence Φ(x0, tn) must exhibit a subsequence
converging to a point z ∈ ×i∆(Si) \ ×i∆(Wi). We
have reached a contradiction, since ∀x0 ∈ ×iint(∆(Si)) :
ω(x0) ⊂ ×iint(∆(Wi)). �

We can also apply our topological characterization
results to identify analogous lower bounds.

Theorem 4.3. Let F : ×i∆(Si) → � be a continuous
feature of the state space and let Wi be the support of
agent i in a maximum support equilibrium then we have
that:

sup
x∈×iint(∆(Wi))

lim sup
t→∞

F(Φ(x, t)) ≥ max
x∈×i∆(Wi)

F(x).

Proof. Given any point x ∈ ×i∆(Wi) and for any δ > 0,
we can create an open set Sδ

x ⊂ ×iint(∆(Wi)) bounded
away from the boundary such that supy∈Sδ

x
∥x−y∥2 ≤ δ

and infy∈Sδ
x
∥x − y∥2 ≥ δ/2. As we have argued in

theorem 3.3 such sets are infinitely recurrent. Given
any such set Sδ

x there exists a y(x, δ) and (tn)n∈N such
that limn→∞ tn = ∞ and limn→∞ Φ(y(x, δ), tn) ∈ Sδ

x.
Since F : ×i∆(Si) → � is continuous, for any ϵ > 0,
there exists a δ > 0 such that for all x, y ∈ ×i∆(Si)
with ∥x − y∥2 < δ we have that |F(x) − F(y)| < ϵ.
Putting all this together, we have that for any x ∈
arg maxx∈×i∆(Wi) F(x) and any ϵ > 0 there exists a
y ∈ int(∆(Wi)): lim supt→∞ F(Φ(y, t)) > F(x) − ϵ. �

Naturally, we can derive analogous relations for inf
and min. Combining the above two theorems we derive
the following tight characterization:

Corollary 4.1. Let Φ the replicator flow when applied
to a separable constant-sum multiplayer game that has
an interior Nash equilibrium and F : ×i∆(Si) → � a
continuous feature of the state space then

sup
x∈×iint(∆(Si))

lim sup
t→∞

F(Φ(x, t)) = max
x∈×i∆(Si)

F(x).

It should be clear that if we combine the results
of this section with “nice” features F (e.g. a linear
functions of the state space), then we can identify tight
bounds on the extremal values of such features over
all system orbits efficiently. We provide some explicit
applications along those lines in Appendix A.

5 Concluding Remarks

We develop a novel framework to address analytical
challenges that arise in decentralized systems. Our ap-
proach does not prescribe a “correct” equilibrium con-
cept. On the contrary, our goal is to embrace the true
complexity of such systems and to identify their persis-
tent properties efficiently. Along the way we bring to-
gether tools and intuitions from traditionally disparate
but well developed areas such as theory of optimiza-
tion, topology of dynamical systems, algorithmic game
theory, as well as, novel ideas. Our results go against
established intuitions about chaotic environments and
the obstacles they pose to algorithmic inquiry. Explor-
ing the limits of the applicability of these ideas is a
rather promising area for future work.

Specifically, we believe that from this starting point
two interesting challenges spring forward. One is a ques-
tion about the analysis of socioeconomic environments,
where the other is about the efficient design of complex
systems.

The replicator dynamics as a model of actual human
decision making is overly simplistic and hopelessly in-
complete. So, is any other model. Nevertheless, system
analysis in game theoretic settings can still be rather
useful. This is because it can be indicative about which
is the natural mathematical language in which real life
solutions should be framed. The established practice
in game theory is to output solution points (specifically
Nash equilibria). This work indicates that this approach
is too restrictive even for the flagship case of zero-sum
games. The descriptive framework of Nash equilibria
does not suffice to capture critical subtleties of these en-
vironments. Given the importance of zero-sum games
(as well as their natural network extensions) we should
possibly consider more flexible set-based solution con-
cepts. The idea of persistence patterns (adapted from
mathematical ecology) attempts a step in this direction,
and we hope that future work will explore these ideas
further.

In the reverse direction, when it comes to designing
large decentralized artificial systems we have complete
control over the operational dynamics. The choice of
dynamics is a key design decision. Replicator dynamics
(and its variants) could act here as a catalyst in terms of
establishing novel design paradigms. The connections
that replicator dynamics effortlessly weaves between
information theory, physics, computer science, topology,
biology, ecology and control theory compose a potent
mix that calls to be put into action. We need to
see replicator trajectories for what they really are; a
powerful, naturally occurring, computational primitive
and then understand how to exploit them. Exploratory
steps in this direction [27] are currently under way.
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A Applications

As we have shown we can compute the maximum Nash
equilibrium support Wi for each agent i efficiently. Typ-
ically, a constant-sum economy captures the competi-
tion between two of more service providers that vie for
the attention of as large a subsection of the customer
base as possible. We normalize our constant-sum games
so that the sum of utilities of the agents is equal to 1 and
that the agent utilities are always positive. The utility
of an agent captures its market share. In this case, every
market participant is faced with two key questions:

• Will my company survive in the long run?

• Is my company achieving its full potential?



We will show how can we apply our framework to
provide insights on this kind of question.

A.1 Margins of Survival In this case, the fea-
ture F is the utility of each agent ui. In terms
of the survivability of each company, we can assume
that each company i has some margin of survival γi.
If its market share drops below this critical thresh-
old γi then there is no turning back and the com-
pany is doomed. The company’s survival can only
be guaranteed, regardless of the initial condition x,
as long as infx∈×iint(∆(Si)) lim inft→∞ ui(Φ(x0, t)) ≥ γi.
Going back to proposition 4.2, we have shown the
following: infx∈×iint(∆(Si)) lim inft→∞ ui(Φ(x0, t)) ≥
minx∈×i∆(Wi) ui(x). The (expected) utility of the agent
over a randomized strategy is defined via a multilinear
extension of the values of the utility function over the
pure strategy outcomes x ∈ ×iWi. In this case, we
have that minx∈×i∆(Wi) ui(x) = minx∈×iWi ui(x) and
the latter problem can be trivially solved in polynomial
time.

A.2 Optimal Market Performance Once again,
the relevant feature F is the utility of each agent
ui. The optimal market share that a company
can ever hope to achieve, once the initial tran-
sients of the market have settled down is captured
by the term supx∈×iint(∆(Si)) lim supt→∞ ui(Φ(x0, t)).
Applying again proposition 4.2, we have the fol-
lowing: supx∈×iint(∆(Si)) lim supt→∞ ui(Φ(x0, t)) ≤
maxx∈×i∆(Wi) ui(x). Similarly, as in the case of the
minimum we can compute this maximum in polynomial
time.

B Proof of Theorem 3.4

We commence the analysis with the following technical
lemma, whose proof can be found in [1] but is also
provided here for completeness:

Lemma B.1. If g(t) is a twice differential function with
uniformly bounded second derivative and limt→∞ g(t)
exists and is finite then we have that limt→∞ ġ(t) = 0.

Proof. Let’s denote by M ≥ 1 an upper bound on the
second derivative of g. Suppose that the statement
was not true. In this case, we would be able to find a
sequence {tn} going to infinity such that ġ(tn) remains
bounded away from zero. Next, we can assume that
tn+1 > tn + 1 and ġ(tn) ≥ ϵ for some 0 < ϵ < 1. If
we define g2n = g(tn) and g2n+1 = g(tn + ϵ

2M ), then a
first application of the mean value theorem implies that
ġ(t) ≥ ϵ

2 for tn ≤ t ≤ tn + ϵ/2M . A second application
implies that g2n+1 − g2n ≥ ϵ2

4M > 0. Hence, limn→∞ gn

if it exists, is infinity. Therefore, the same holds for
limt→∞ g(t). �

We prove the following asymptotic property of the
orbits of flow Φ.

Theorem B.1. Let Φ denote the flow of the replicator
dynamic when applied to a network-zero-sum game. If
Φ does not exhibit an interior fixed point, then given
any interior starting point x ∈ int(×i∆(Si)), the orbit
Φ(x, ·) converges to the boundary of the state space.
Furthermore, if q is an equilibrium of maximum support
with Wi the respective supports of each agent’s strategy
then ω(x) ⊂ ×iint(∆(Wi)).

Proof. From the second part of proposition 3.2,
we have that starting from any fully mixed strat-
egy profile x0 ∈ ×iint(Si) and for all t′ ≥ 0
dH(q,Φ(x0,t))

dt |t=t′ < 0. However, DKL(q∥Φ(x(0), t))
is bounded below at zero, and since it is strictly
decreasing it must exhibit a finite limit. Since
dH(q,Φ(x0,t))

dt = −
∑

i

∑
(i,k)∈E qT

i Ai,kxk, it is immediate
that DKL(q∥Φ(x0, t)) has bounded second derivatives.
Lemma B.1 implies that limt→∞

dH(q,Φ(x0,t))
dt = 0. This

implies that for any y ∈ ω(x0) we have that the support
of y must be a subset of the support of q. The support
of q is not complete in the first place since q is not a
fully mixed equilibrium, hence y must lie on the bound-
ary as well. Finally, since DKL(q∥Φ(x0, t)) has a finite
limit each y ∈ ω(x(0)) must assign positive probability
to all strategies in the support of q. �

C Proof of Theorem 4.1

Here, we will use a slightly different notation for n-
person separable zero-sum multiplayer games, following
that of [6] since it helps with reducing the notational
burden for this section and it allows us to apply verba-
tim results from that paper. Let GG , {Au,v, Av,u} be
an n-person separable zero-sum multiplayer game. Ev-
ery agent u has mu strategies. We set Au,v = Av,u = 0
for all pairs (u, v) /∈ E. Let the corresponding lawyer
game G = (R,C) be a symmetric

∑
u mu ×

∑
u mu bi-

matrix game, whose rows and columns are indexed by
pairs (u : i) of agents u ∈ [n] and strategies i ∈ [mu].
For all u, v ∈ [n] and i ∈ [mu], j ∈ [mv] we have that:

R(u:i),(v:j) = Au,v
i,j and C(u:i),(v:j) = Av,u

j,i

Intuitively, the formulation is such that each lawyer
can choose a strategy belonging to any one of the nodes
of GG. If they happen to choose strategies of adjacent
nodes, they receive the corresponding payoffs that the
nodes would receive in GG from their joint interaction.



In [6], Cai and Daskalakis show that finding a
(generic) Nash equilibrium of a separable constant-sum
game is equivalent to solving the following LP:

max 1
n

∑
u ẑu(C.1)

s.t. xT · R ≥ zT ;
zu:i = ẑu∀u, i;∑
i∈[mu] xu:i = 1

n , ∀u;
xu:i ≥ 0, ∀u, i.

We define the following bijection between vectors
x satisfying

∑
i∈[mu] xu:i = 1

n ,∀u; xu:i ≥ 0,∀u, i and
mixed strategies y of game GG as following: ∀u ∈
[n],∀i ∈ [mu] we set yu(i) = n · xu:i. Specifically, we
have that:

Theorem C.1. [6] Given an optimal solution to the
LP (C.1), the set of vectors yu with yu(i) = n ·
xu:i,∀u ∈ [n],∀i ∈ [mu] is a Nash equilibrium of
the separable zero-sum game GG. Given any Nash
equilibrium y1, y2, . . . , yn of the separable zero-sum game
there exists an optimal solution of the LP (C.1), with
xu:i = yu(i)

n , ∀u ∈ [n],∀i ∈ [mu] for some z, ẑ. The
optimal value of the LP is zero for all separable zero-
sum games. The set of Nash equilibria is convex.

As we have already argued, since the set of Nash
equilibria is convex, all equilibria of maximal support
have exactly the same support (for all agents). We will
find this maximum support in polynomial time. More-
over, we will find an equilibrium of maximum support.
Although finding such an equilibrium is NP-hard [15]
in general-sum games, we show that its computation is
tractable in the case of separable constant-sum multi-
player games. Exploring these issues in other classes of
games could be an interesting direction for future work.

Theorem C.2. Given a separable constant-sum multi-
player game we can find a Nash equilibrium of maximum
support in polynomial time.

Proof. Since the optimal value of the lawyer LP (C.1)
has optimal value equal to zero then any optimal
solution to LP is a feasible solution to the linear
feasibility problem defined by the adding the linear
constraint

∑
u ẑu ≥ 0. to the constraints of the

(C.1). The reverse is also trivially true. Incorporating
theorem (C.1) we have that given a solution to our
linear feasibility program, the set of vectors yu with
yu(i) = n · xu:i∀u ∈ [n],∀i ∈ [mu] encodes a Nash
equilibrium of the separable zero-sum game GG. Given
any Nash equilibrium y1, y2, . . . , yn of the separable
zero-sum game there exists a feasible solution of our

linear feasibility program with with xu:i = yu(i)
n , ∀u ∈

[n],∀i ∈ [mu] for some z, ẑ. Given agent u ∈ [n] and
i ∈ [mu], we define the following LP:

maxxu:i(C.2)
s.t.

∑
u ẑu ≥ 0

xT · R ≥ zT ;
zu:i = ẑu∀u, i;∑
i∈[mu] xu:i = 1

n , ∀u;
xu:i ≥ 0, ∀u, i.

The x vector in an optimal solution of the LP above
pinpoints out of the set of all Nash equilibria of game
GG, an equilibrium where the probability that agent u
assigns to strategy i is maximal. In other words, the
value of the LP above is positive if and only if there
exists a Nash equilibrium where agent u assigns positive
probability to action i. We find an optimal solution
for each LP of the form C.2 for all agents u ∈ [n] and
i ∈ [mu]. We can do this efficiently since there exist
only polynomially many such combinations. Finally,
since the set of Nash equilibria is convex, we output the
probability distribution that corresponds to each agent
u choosing amongst his respective mixed strategies in
each of the solutions of the LPs above uniformly at
random. By convexity of the set of Nash equilibria this
strategy profile is also a Nash equilibrium.

Finally, this Nash equilibrium is of maximum sup-
port. Let’s assume that there existed a Nash equilib-
rium in which an agent v assigned positive probabil-
ity to a strategy j while in our defined mixture we get
xv:j = 0. However, the optimal value of the linear pro-
gram C.2 corresponding to v, j would be greater than
zero, reaching a contradiction about xv:j = 0 in our
mixture of the LP solutions. �


